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DIFFUSIOPHORESIS: MIGRATION OF COLLOIDAL PARTICLES
IN GRADIENTS OF SOLUTE CONCENTRATION

John L. Anderson and Dennis C. Prieve
Department of Chemical Engineering
Carnegie-Mellon University
Pittsburgh, PA 15213

ABSTRACT

When a rigid colloidal particle is placed in a solution
which is not uniform in the concentration of some solute that
interacts with the particle, the particle will be propelled in
the direction of higher or lower concentration of the solute. The
resulting locomotion is called diffusiophoresis. Experimental ob-
servations and theoretical predictions of the migration velocity
of hydrosols are reviewed. Present commercial applications in-
clude the formation of rubber gloves and the deposition of paint
films onto a steel surface. New applications to the analysis of

colloidal mixtures and solid-liquid separation are suggested.

INTRODUCTION

Driving forces for transport of colloidal particles gen—
erally include concentration gradients of the particles them—
selves (diffusion), electrical fields (electrophoresis),
gravitational or centripetal fields (sedimentation) and pressure
gradients (convection). Particle movement by a thermal gradient
(Soret effect or "thermophoresis'") is sometimes utilized in spe-—
cial applications. Another driving force for transport of
colloids is a concentration gradient of a molecular solute.

"Diffusiophoresis'" is the term broadly applied by B.V.

Derjaugin1 to the movement of a colloidal particle in response

to a gradient of a molecular solute. Although he apparently
67
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intended this term to describe both fluid drops and rigid parti-
cles, we suggest it be used only for the motion of rigid
particles; the motion of fluid drops should be considered a
"Marangoni effect," that 1is, movement generated by a surface
tension gradient. The reason for this distinction is based on the
difference of the role of interfacial structure in the transport
processes within the surrounding fluid. With the diffusiophoresis
of rigid particles, it is essential that the interaction between
solute and particle surface be diffuse (the particle velocity is
proportional to the thickness of this diffuse interfacial layer).
On the other hand, the velocity of fluid drops is independent of
interfacial structure and is proportional to the drop radius
instead of the interfacial thickness. Because we are concerned
with particles and drops of order 1um, which is very large
compared to the thickness of the interfacial region, this differ-
ence means diffusiophoretic velocities are several orders of
magnitude smaller than typical velocities of drops. The concept
of a diffuse interfacial region, where solute and particle inter-
act, is made more quantitative in the text where a numerical
criterion to judge particle rigidity is developed.

Although diffusiophoresi§ of aerosols has been extensively
st:udied,:;_6 there has been less attention given to diffusiophore-—
sis of hydrosols. Perhaps this lack of attention has to do with
the fact that the steep solute concentration gradients required
usually occur only in the diffusion boundary layer, where many
phenomena occur simultaneously. It is quite possible that
diffusiophoresis has, in fact, had a significant but unrecognized
effect on particle transport rates in boundary layers during
coating processes and in porous membranes. There is no question
that particle movement induced by a solute gradient is important
in microbiology, where the term 'chemotaxis" denotes the loco-
motion of living cells by gradients of chemical agents.7

Our purpose in this review is to explain the mechanism of
diffusiophoresis and to discuss its importance as a transport

process for colloids. For example, Smith & Prieve8 showed that
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diffusiophoresis is the mechanism of a new commercial process for
applying the first layer of paint on automobile frames and other
metal surfaces. Acid and hydrogen peroxide, which are added to
the dilute water-based paint, cause the iron in carbon steel to
oxidize and dissolve at a rate limited by diffusion of reactants
through the boundary layer next to the metal surface. The gradi-
ent in electrolyte concentration induces an electric field in the
boundary layer which attracts negatively charged latex particles
toward the metal surface. In this process, the induced gradient
of electrical potential serves as the main driving force for
diffusiophoresis of the latex particles. More generally, gradi-
ents in the electrochemical potential or chemical potential of
the particle may serve as the driving force.

Although the model for diffusiophoresis which we discuss in
subsequent sections utilizes surface science, mass transfer and
fluid mechanics, an appreciation for the phenomenon can be gained
from principles of thermodynamics. The energetics of the system
are determined at the particle/solution interface which has asso-
ciated with it an excess surface free energy per area
(0), sometimes called the "interfacial tension.'" One may consider
o of a fluid/fluid interface to be either a force per length or a
free energy per area, but only the latter is reasonable for a
solid/fluid interface. Suppose one spherical particle of radius a
is transferred at constant temperature from a solution having
solute concentration C_, to another solution of concentration

1
C If the solute is 'surface active" it adsorbs on the particle

®) "
and lowers the interfacial tension from g, to o,. The change
in free energy is
AG = lmaz(cr <) (1)
271
If sz > le then 9, <9, and AG < O3 thus, the particle

would tend to move spontaneously.
The above conceptual experiment is now altered by imagining
the particle to be in a solution in which C, is a function

of position. The gradient of free energy for one particle is
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= ina’vg = 4ma? ( -
VG = 4ma Vo = 4ma 3C, )Tvc_ 2)

Changes in surface free energy with changes in solute concentra-
tion under equilibrium conditions are related to the extent of
solute adsorption through Gibbs equation,9 which for dilute

(thermodynamically ideal) solutions is

- kr T
= ) === kT K (3)
) -

where ' 1is the Gibbs '"surface excess concentration" of solute
(solute adsorbed to the surface per area), and KEI’/Cm is called
the '"adsorption length,”lo which is a measure of how strongly the
solute is adsorbed as C_+» O. The above two equations indicate
that, when the solute adsorbs on the particle, the particle can
lower its free energy by moving toward regions of higher concen-
tration. Thus from thermodynamics alone, one can prove that a
particle will spontaneously migrate toward higher solute
concentration.11

The limitation of models based on equilibrium thermo-
dynamics is, of course, that they fail to predict how fast the
particle moves. Attempts to estimate particle velocity on phenome-
nological grounds can lead to great error, as shown below.
Suppose we make the reasonable postulate that velocity is

proportional to the gradient of free energy:

1
g--EVG %)

where f 1is some friction coefficient. To proceed further, one
must guess what f is; one plausible choice is Stokes law:
f=6nna, where n is the solution viscosity. When combined with

equations (2)-(4) this choice gives

ak kT 0

2
.‘.1.—5 mn

c, (5)
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which, as shown in subsequent sections, is wrong. It turns out
that Stokes law is not appropriate here. Because diffusiophoresis
results from a coupling between interfacial forces and fluid
mechanics, one must address the transport phenomena occurring
within the interfacial region at the particle/solution boundary
in order to relate correctly the particle velocity to the physico-
chemical properties of the solution. Although the interfacial
region may only be of order 108 thick, we will apply the con-
tinuum equations of mass and momentum transport in this region,
as found in the theoretical models for electrokinetic
phenomena.z’12

As motivation for an analysis of transport in the inter-
facial region, consider the interfacial-tension-driven movement
of fluid drops. When a drop is placed in a gradient of surface-
active solute, the high concentration (forward) pole of the drop
experiences a lower surface tension than the rear pole. Expansion
of regions with a low interfacial tension and contraction of
regions with a high interfacial tension propels the drop toward
higher solute concentration. When the solute cannot enter the

drop, the drop velocity is

- 8K kT
By = 3n+27 "G (6)

where ny is the viscosity of the fluid inside the drop and K is
defined by (3). This expression was derived by Young et gl.l3 for
a thermal gradient but applies equally well to a solute gradient,
assuming the Peclet number is much less than one.14 The subscript
M is used to emphasize that this motion is a Marangoni effect, in
which all interfacial phenomena can be lumped into an interfacial
tension acting at the plane of the drop surface; that is, the
structure of the interfacial region need not be known. Note that
if the drop is made rigid (ni + ®) then HM + 0, and hence the
usual analysis for Marangoni motion does not predict

diffusiophoresis.
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1,2,15-17 for

Credit must go to Derjaguin and his coworkers
first predicting diffusiophoresis of rigid particles and elucidat-
ing the basic physical principle behind it. When the adsorbed
layer of solute‘is diffuse, a tangential gradient in hydrostatic
pressure arises inside it which causes fluid elements to acceler-
ate until the net force is balanced by viscous stress. From this
force balance Derjaguin et 31.15 obtained the following expres-
sion for the relative velocity between a planar solid surface

(y=0) and the distant fluid (y + «») in which there exists a gra-

dcC
@
dient P in the concentration of an uncharged solute:

.
Upep = V(™) = V(O) = - %(;}')I y[ew (ER Y1)y o
0

E(y) is the energy of one solute molecule at distance y from the
solid surface. "Adsorption'" means E < O, where by definition
E+ 0 as y » =, Equation (7) indicates that if the solute ad-
sorbs to the solid, then the fluid flows toward lower solute
concentration, assuming the solid surface is the pore wall of a
membrane which is mechanically held fixed. If such a membrane,
with sufficiently large pores, separates two reservoirs of solute
having different concentrations but equal pressure, (7) predicts
a spontaneous flow from high to low ':.oncem:rat:ion;‘!c such an
"osmotic'" flow has been observed.17

Derjaguin did not explicitly analyze the movement of parti-~
cles in Ref. 15. Instead he considered (7) to be a slip velocity
between the fluid and a solid whose mean radius of curvature is
sufficiently large that its surface appears flat at the length
scale (L) of the interfacial region. By changing the frame of

reference to allow the solid to move and the fluid be stationary

*
Osmosis is usually thought of as a solvent flow from lower to

higher concentration through a 'semipermeable" membrane which
totally excludes solute. In the case discussed here, the porous
membrane actually adsorbs solute, rather than rejects it, and
hence flow is in the opposite directionm.
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at y » o, he inferred the particle velocity to be -U that

rel’
is, the particle wmoves toward higher solute concentration as
expected from thermodynamic arguments. A more rigorous analysis18
of particle motion shows Eq. (7) to be correct only if the
particle radius is much greater than both L and the adsorption
length K.

Derjaguin also considered solutes which ionize. With elec-
trolytes there are two mechanisms for motion.19 First, adsorption
of ions into the diffuse part of the double layer produces a
contribution to the particle velocity which is analogous to that
for nonelectrolytes, except that there are now two solute species
— the counterion, which is attracted to the charged particle, and
the co-ion which is repelled. Deraguin et gl.l calculated their
effects separately using Eq. (7) and then added them. For conven-
ience, we denote the net contribution from ion adsorption as
"chemiphoresis." The second mechanism (which we call "electro-
phoresis") results from the electric field induced by the solute
gradient when the cation and anion have different mobilities.
This induced electric field exerts a force on the charged parti-
cle just as an applied electric field does. Although
chemiphoresis always pulls the particle toward higher electrolyte
concentration, electrophoresis could cause motion in either
direction depending on the sign of the particle's charge. Thus,
diffusiophoresis caused by electrolytes can result in motion
either up or down the solute gradient, whereas with non-
electrolytes the motion is always* up the gradient.

In this paper we discuss diffusiophoresis in terms of the
physics and mathematics needed to understand it, experiments
aimed at measuring it, and its importance to particle technology.
We begin with a discussion of the role of interfacial phenomena
in the coupling of fluid mechanics to mass transfer. This

coupling, which occurs in an interfacial region whose thickness

*
In principle, a repulsive interaction between the solute and the

particle could cause motion in the opposite direction, but the
integral in (7) is severely limited in magnitude when E(y) > 0.
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is tens of Rngstroms, determines the macroscopic rate pro-
cesses. It is essential to appreciate what happens within this
interfacial layer in order to understand why rigid particles move
in concentration gradients. We then consider particle movement
when the interfacial region is thin relative to the particle
size. In this limit the relationship between particle velocity
and solute gradient 1is independent of particle shape, as for
electrophoresis. The movement of fluid drops is re—examined, this
time with allowance for an interface of finite thickness, to
demonstrate how the Marangoni result (Eq. (6)) can be reconciled
with the diffusiophoretic result as the internal viscosity of the
drop becomes large. We then move to the analysis of particle
motion when the dimension of the interfacial layer is not infini-
tesimal to devélop criteria for wvalidity of the thin-layer
results. We end with a discussion of experimental attempts to
measure diffusiophoretic velocities, and of the importance of
diffusiophoresis as both a transport mechanism and a basis from
which analytical methods could be developed for inferring inter-

facial properties of colloids.

THE INTERFACTIAL REGION
The Equilibrium State:

The adsorption of an un- I}y
charged molecular solute from a
fluid phase ontoa solid surface
is quantitatively described by
the Gibbs '"surface excess" con-
centration T (moles per area).
As Figure 1 indicates, adsorbed

solute does not necessarily

stick as one layer to a surface

but, in general, could be dis-

tributed non-uniformly over a FIGURE 1
Profile of solute
concentration inside
sents the interfacial region. interfacial region.

layer of thickness L which repre-
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. . . 9
The surface excess concentration is defined as
«

r =J. lcty) - ¢l dy (8)
0

where C_ 1is the solute concentration in the bulk fluid phase.
Also, L represents the distance from the surface over which C
varies appreciably from C_; it is expected to be of order 10%.

A second length scale is the adsorption length:

™
k= [lew -cla , )

)
which can be interpreted as the thickness of a bulk solution
layer that has to be stripped of solute to account for the excess
I'. Several points should be made about K. First, it is a
mass-equivalent length and not a physical length. Second, the

magnitude of K is a measure of the strength of adsorption:

K >> L means the solute strongly adsorbs. It is not uncommon for
K to be as large as lum.10 Third, K (and hence TI') could be neg-
ative if solute is repelled from the surface, as is the case with
simple electrolytes at the air/water interface. We shall demon-
strate that K as well as L are essential parameters in the

physics of diffusiophoresis.
A positive value of T implies that the pressure is
greater inside the interfacial region than in the bulk fluid. At
infinite dilution, the Gibbs equation is given by (3). Theories

21,22 can be used to relate the

of the mechanics of the interface
decrease in interfacial free energy, caused by a change in solute
concentration, to the integral average of the excess interfacial

stress. o

o, -0 =] wpy) @ (10)
0
where 9, is the interfacial free energy when C =0 and p-p_
is the excess pressure due to the solute adsorption. Solute-

solute interactions are neglected in (10); so the solute effect
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on the interfacial stress is isotropic. At higher solute concen-
trations, where solute-solute interactions are significant, this
. . 2
isotropy is lost.

Assuming K is independent of C_, (3) and (10) are com-

bined to give o

I (p-p) dy = CK kT = TkT , (11)
0
which clearly demonstrates that p > p_ within the interfacial
region if solute adsorbs to the surface. In addition to its
mass-equivalent definition, K in (11) represents the distance
over which the osmotic pressure C_kT acts on the fluid.
0f central importance is the distributed nature, or diffuse-~
ness, of the solute adsorption. A potential energy E(y) is
defined in terms of the solute distribution wusing Boltzmann's
equation:

c(y) = ¢, expl-E(y)/kT] (12)

where it can be shown24 that -E'(y) is a force acting on a solute
molecule when it is at distance y from the surface. This energy
represents the sum of solid-fluid-solute interactions relative to
fluid-solute interactions in bulk fluid; thus, E + 0 as

y + », At low concentrations this force is transmitted to the

solvent to establish a pressure gradient across the interfacial

region:
dp 4E _
dy + C Iy o, (13)
which when integrated with the help of (12) gives
P - P, = C, kT [exp(-E/kT) - 1] . (14)

This expression is consistent with (9) and (11).

Flow Caused by Non-electrolyte Gradients

In the preceding section C_ was assumed uniform. Now con-
sider a gradual variation parallel to the surface such that
locally C_(x) = Cw(xo) + (x—xo)C;(x). If the distance over

which C_ changes appreciably, Cm/C;, is large compared to L,
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one can assume that Egs. (12)-(14) are valid locally. Although
the pressure outside the interfacial layer (pm) is constant,
there exists a tangential pressure gradient within the interfac-
ial region because of the variation of C_, as seen from (14). As
a result of this pressure gradient, the fluid elements accelerate

until the viscous stress balances the pressure gradient:

2
3 v, 3p
Mg -3x=0 (15)
3y
Boundary conditions are
y = 0: Ve =0 (no slip at solid surface)
dv
y e 5;5 +0 (no pressure gradients in bulk fluid)

Substituting (14) into (15) and integrating twice gives

y -]
kT an ,
ve=-2(GF)] o] lemeronnm -1 e+ a6
b3 n dx 0
.yl
which predicts the profile qual-
itatively shown in Figure 2. '} y

Note that outside the inter-

ROF

facial region (i.e., y

Vi takes on its asymptotic

value as y =+ «. Compared to L+———— }-———

the much larger radius of curva- \7'

ture of the surface, the thick- |

ness of the interfacial region

over which Vo varies contin-

uously from zero to its upper Vx
1

limit 1is so small that the SS S STXS ; /

value of Ve obtained by replac- Ljre|

ing y in (16) by o can be

FIGURE 2
Velocity profile inside
the macroscopic scale. After interfacial region.

treated as a ''slip velocity" at
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integration by parts, this slip velocity is given by (7).
The form of (7) is not useful because there are no direct
methods of measuring E(y). However, the integral is related to

two length scales which characterize E(y):

dc

= - L¥K KT "=
Ure1 m dx (a7
where K is given by (9), or
K =j' (exp(-E/kT) - 1] dy (18a)
0
and
J' ylexp(-E/kT) - 1] dy
1+ = —2 (18b)
I Lexp(-E/kT) - 1] &
0

K is a measurable parameter, since T can be determined as a
function of C_ at equilibrium. Although L* is not directly mea-
surable, it has the same order of magnitude as L.18

The applicability of continuum mechanics could be
questioned if L* < 102, but thermodynamics leaves no doubt that
a solute gradient will cause flow. In addition, there are two
other implicit assumptions: The surface is smooth, and there are

no kinetic barriers to the adsorption and desorption of solute.

Equation (17) shows the importance of the diffuseness of
the interfacial layer. Even though K may be large, if the solute
were actually adsorbed on the surface rather than in a diffuse
layer then L* and Urel vanish. It is not enough for the adsorp-
tion to be strong; the adsorbed layer must extend several solute

diameters away from the surface to achieve meaningful velocities.

Flow Caused by Electrolyte Gradients

If the solute dissociates into ions, the analysis of stress

and flow within the interfacial region is more complex because
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two species must be accounted for as well as the local electro-
static potential. However, in the case of electrolytes, the

thickness of the interfacial region is known a priori:

L= nl = (ckT/anzzezca)% (19)

where ® is the Debye screening parameter that appears in equi-
librium double-layer theory. We limit our discussion to
electrolytes where cation and anion have the same charge number
(z).

Under equilibrium conditions the ion concentrations at dis-
tances of u_l or less from a charged surface differ from their

bulk values. The ion distributions in this region are

¢ =C, explzze (¥-¥_)/kT] (20)

where the upper and lower signs refer to cation and anion,
respectively. In diffuse double-layer theory (i.e., the Gouy-
Chapman modelg) Eq. (20) is used to compute the space charge in
Poisson's equation (the continuum representation of Coulomb's
law). The result is the Poisson-Boltzmann equation which has the
following solution:
tanh(u/4) = y exp(~ny) (21)
u = ze(v-vm)/kT
vy = tanh(us/4)

where ug is the potential at the surface (i.e., the 'zeta
potential"), rendered in dimensionless form. The pressure varia-
tion within the interfacial region is obtained by balancing the
normal component of the pressure gradient with that component of

the electrostatic body forces acting on a fluid element:

dp - a¥ .
Iy + ze (C+ c.) Iy o . (22)
Integration produces the following result when (20) is used:

p-p, = 2C kT [cosh(u) - 1] . (23)

Because cosh(u)-1 is an even function and always positive,

p—p, > O within the double layer no matter what the sign of u(y).
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If the bulk concentration C_ changes gradually enough
along a parallel to the surface, (23) still can be applied
locally, but p now depends on x; 9p/3x 1is not balanced by
the x-component of the electrostatic body force. Using (20), (23)
and the definition of u, the net tangential force per volume
acting on fluid elements is found to be:

% ay dc_ ay_
ax T 2e(C,~C) 3 2kT [ cosh(u)-1] ot 2e(C-C) &~ (24)

If the cation and anion diffusion coefficients (D+ and D_) are
not identical, the gradient in concentration of salt in the bulk
fluid gives rise to a '"diffusion current," since one ion diffuses
more rapidly than the other. To prevent a continuous separation
of charge, an electric field spontaneously arises in the bulk to
produce an ‘"electric current" which exactly balances the

diffusion current. The necessary electric field is given by:20

-.di= H.dﬁ,_c_- 25
dx ze dx (23)

5 - D+ - D_

D+ +D_

Generally, the right-hand-side of (24) is nonzero, so the fluid

elements accelerate until viscous stresses bring the forces into

2
d%v
balance. Equating the right-hand-side of (24) with 1 2x and us-
dy
ing (20) to express C+—C_ in terms of u yields:
d2vx dC°°
N —5= = 2kT [(cosh(u) = 1) + B sinh(u)] e (26)
dy X

The second term on the right-hand-side of (24) or (26) results
from the induced electric field acting on the space charge in the
double layer; this gives rise to the "electrophoretic" contribu-
tion to relative motion between fluid and solid. The first term

is associated with net adsorption of the electrolyte:
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T = ‘[0 [C++C_-ZC=] dy = 2¢_ 'l‘o [cosh(u)-1] dy 27)

and produces the ''chemiphoretic'" contribution. After substituting
(21), the integration of (26) gives the relative velocity between
fluid and solid:

donc

2 ]
- ﬁ(%) (B ug-2 on (1)) ——= (28)

where y is given under (21). Note that chemiphoresis [the second
term in (28)] always tends to move the fluid toward lower Cm

but electrophoresis could cause motion in either direction depend-
ing on the sign of the product Bu . It appears from (28) that
the relative fluid velocity is proportional to d&nC_/dx rather
than to de /dx, but this is not necessarily so since us, and

hence Yy, could also depend on C_.

PARTICLE MOVEMENT: INFINITESIMALLY THIN INTERFACIAL LAYERS
In the previous section we examined fluid motion generated
by a solute concentration gradient directed parallel to an infi-
nite planar, solid surface which was considered stationary. These

results can be applied to large particles of arbitrary shape to

obtain the diffusiophoretic velocity in a stagnant fluid. By
"large" we mean a particle whose surface appears flat on the
local scale of the interfacial region. As shown in the next
section, this means that the mean radius of curvature of the
particle surface is everywhere much larger than both L and the
adsorption length K.

OQutside the interfacial region (y >> L) the solute gradi-
ent generates no force on the fluid. Consider an imaginary
boundary J; which encloses the particle but is never closer than
several L from the particle surface. Because no forces act on the
fluid outside a%, the velocity field v must be of such form that
the net fluid force acting on J; from the outside 1is zero.
(Note that the coordinate system moves with the particle, so

v + -U at great distances from the particle, where U is the
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particle velocity in a laboratory-fixed coordinate system.) For
an incompressible Newtonian fluid this zero-force constraint is

written as

[Ja-gas=0 , g=-pp+1lvw+ w7 (29)
o
[o]

where the unit normal n points out of the region enclosed by

'L' Velocity fields satisfying (29) but having viscous character
inside the interfacial region are called ''phoretic flows.' Other
examples of this type of flow are electrophoresis of charged

5 . . . 26
12,2 and vesicle movement in an osmotic gradient.

particles

We now demonstrate that the results for a flat surface,
Eqs. (17) and (28), also give the diffusiopﬁoretic velocity of a
rigid particle of arbitrary shape in the limit that both L/a and
K/a tend to zero, where g_is the mean radius of curvature of the
particle. Suppose C_(x) is the undisturbed solute concentration

at position x in laboratory-fixed coordinates, and is the

X
£, 98
instantaneous position of the center of the particle and I=X-X .
Outside the thin interfacial region the concentration C(r) must

satisfy the conservation equation:

vic=0 (30)

rw C-.Cuo(-,—c-o)+£.vcw ( 1)

Convection of solute can be neglected in (30) due to the small ve-
locities typically expected. As the surface of the particle is
approached, but staying outside the thin interfacial region, the
flux of solute normal to the surface approaches zero. In the

limit we have
on ,/; : n'vc=0 (11)

where the + on a; emphasizes that this condition applies immedi-
ately outside of the interfacial region. Condition (ii) says that
the interfacial region is so thin that it cannot accommodate a
finite flux of solute into it from the outside region.

The velocity field in the r coordinate system must satisfy

the Stokes equations,
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My =9vp 3L

v
vrv=0

roe v -U (1)
where U is the particle velocity. v must also satisfy the

phoretic condition (29). A field which satisfies these equations

is
v=-9 (32)
Vzd =0 (33)
roe 96 -+ U (1)

where ¢ is a scalar function of r. By the same arguments used
for the solute, the fluid cannot enter the thin interfacial
region:

on Jz : n'vé =10 (ii)

Note from (30) and (33) that C and 4 must satisfy the
same differential equation and very similar boundary conditions
[(30-i) could be replaced by VC =+ vcw]. To fully connect the
two variables we must consider the solute flux and fluid velocity
directed parallel to the surface # . If we use the results of
the preceding section there obtainsp

on d; : v = Hrel =b vC (34)

The coefficient b is determined from (17) for non-electrolytes
and (28) for electrolytes. Combining (34) with boundary condi-

tions (30-ii) and (33-ii) we have

on d: : vé = -b ¥C (35)

By examining (30), (33) and (35) one finds that a new variable
Y = ¢ +bC must satisfy

vY=0 (36)
on J: : vy =0

r+e® Y+ U+ b VC°°
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These equations overspecify Y unless U = -bVC_; then the solu-
tion is Y=0 everywhere. Thus the relationship between the
velocity and the concentration gradient in the bulk turns out to
be identical to (34) which relates the same quantities at any
point on the outer boundary of the interfacial region. This gives

the following expressions for particle velocity:

Non-Electrolyte: = _I_.*I;J (37)
(from (17)) ©
2
e kT 2
Electrolyte: U == ( = )[Bu -20n (1-y")] vonc_ (38)
(Erom (28)) o 4m < ze ) N

The subscript 'o" emphasizes that these results are only valid in
the limit K/a + O and L/a + O.

The above analysis shows that Ho is independent of particle
size and shape. Interfacial properties control the velocity for a
given solute gradient. In the case of non-electrolytes, K can be
determined experimentally by equilibrium adsorption studies, but
there seems to be no direct method of determining L* from an
independent experimental observation. For electrolytes all that
is needed is the dimensionless zeta potential (us) which can be
determined experimentally by electrophoresis or sedimentation
potential, or theoretically from a knowledge of the density of
charge groups on the particle surface. As noted in the previous
section, ug (and hence vy) could depend on C, so that Ho is
not necessarily proportional to VérC_.

An interesting feature of the electrolyte result is that a
particle could move either up or down the solute gradient. The
chemiphoresis term -2 Bﬂ(l—Yz) is always positive, tending to
pull the particle toward higher solute concentration. On the
other hand, B and u, are independent parameters; if sus> 0
the electrophoretic effect augments the chemiphoretic effect by
pulling the particle toward higher solute concentrations, but if
Bus < 0 then the electrophoretic effect tends to move the par-
ticle toward lower solute concentration. A map giving the

direction of net motion based on Eq. (38) is shown in Figure 3.
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FIGURE 3
Map showing the direction of net migration for ka==.

Because 8 is a parameter of the solute only, the direction and
speed of the particle can be adjusted by appropriate selection of
the electrolyte species, assuming it has little effect on parti-
cle zeta potential. For example, consider‘ a charged particle
having u = +1 in an aqueous solution at 25°C with a gradient

|[venc_| = 230 em (i.e., an order of magnitude change in C_

over a distance of 0.1 mm). For two different electrolytes (38)

gives

+ 1.43 pm/sec
- 0.84 um/sec

KCL (B = -0.0067%) U,
NaCcl (B = =0.195%) U

]

o
Thus, the same particle which migrates toward regions of higher
KCl concentration would migrate toward lower NaCl concentration.
1f the particle were negatively charged (uS < 0), it would mi-
grate toward higher concentrations of both KCl and NaCl.

At this point we should re-examine the Marangoni analysisl3
in an effort to determine how it relates to diffusiophoresis. We

have solved the system of equations describing a spherical fluid

o
Estimated from limiting ionic conductance.
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drop of radius a placed in a non-electrolyte gradient, assuming a
thin interfacial region (K/a + 0) and no solute can enter the

fluid inside the drop.18 The result for the drop velocity is

3ﬂiL* + Ma K kT
5, [ 7w 1 e e

Because L* << a, the term accounting for diffuseness of the

interfacial region is negligible when n, v onoso that (39)
agrees with (16) under this condition. As the drop is made more
viscous, however, the diffuseness becomes more important and must
be considered when n; 2 a/L*. Equation (39) reconciles
diffusiophoresis with Marangoni motion, giving (16) when the
interior is fluid and (37) as the interior becomes rigid. Note
that it is the ratio of ni/n which 1is important. For example,
if L*/a = 10_3 then a small drop of oil (ni v 10_1 poise) in
air is essentially '"rigid" and Eq. (37) applies,

The analysis leading to (37) and (38) was for a single
particle. If a number of particles are dispersed in a finite
volume of liquid, one might ask "at what particle concentration
do particle-particle interactions affect these results?'" The prob~
lem examined here, in the limit K/a + 0, is mathematically
identical to electrophoresis when %a + =, The hydrodynamic in-
teraction between pairs of particles, as well as the pair effect
on the solute gradient, falls off as r_3 where r is the distance
between particles. From the result for the electrophoresis of a
suspension,27 we expect the diffusiophoreric velocity of parti-

cles at finite volume fraction ¢ to be

2
U=y [1-0¢+0()] (40)

where go is determined from (37) or (38). Thus, only if the
suspension has a volume fraction greater than a few percent does

one have to correct for the finite concentration of particles.

FINITE INTERFACIAL LAYERS

In the previous section we considered interfacial layers
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which are very thin compared to particle dimensions, but no
criterion was offered for the restriction 'very thin." Thus, the
results (37) and (38) must be considered limiting cases for which
the range of wvalidity is not known. In this section we consider
the effect of finite values of X for spherical particles, where
» is the ratio of the interfacial layer thickness (L or u_l) to
the particle radius. Only a summary of the analysis for finite

A is presented here; more details are available elsewhere.ls’19

Non-Electrolytes

The problem of finding the particle velocity is most easily
solved by working with a coordinate system (r) which is centered
on and moves with the particle, as shown in Figure 4. Let Cm(i)
be the undisturbed solute concentration field which would exist
in the absence of the particle, and let o« be |VC_| evaluated
at the particle's center X=X . As the particle migrates, its
environment and velocity may change; however if the migration
speed is slow enough, a quasi-steady state 1is achieved. The
analysis below parallels that presented in Ref. 18, except that
convective transport of solute is included.

Conservation of solute is expressed through the following

dimensionless equation:

v2ck + v (CHVB) = Pe, v cve? 4 Pe, [v *vex + Ee'QJ (41)
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Aok |, 28,
p=1: 'Sp—-i-c*ap 0
p Ao Ck & p cosd

& = E/KT is the dimensionless solute-surface energy of interac-
tion, while C* is a dimensionless perturbation in solute

concentration,
C-C (%) exp(-3)

Ck = - (42)

v and ﬁ are the local fluid velocity and particle velocity, both
made dimensionless by UO given in (37), and p=r/a where a is

the particle radius. The two Peclet numbers are defined as

e, = CO(EO) L*K kT P - Xal*K kT
1 N e N

(43)

Two such parameters are needed because there are two characteris-
tic values of concentration, C”(go) and oa. Sample calcula-
<< 1 but Pe

tions show Pe ~ 0(1), and hence Pe, could be an

important paraieter in some Lituatioﬁs. The differetce in magni-
tude between the two Peclet numbers arises because C_>>aa
in general.*

Stokes' equation for the velocity field v is solved using a
dimensionless stream function W(p,e) which automatically satis-
fies the continuity of mass. The momentum equation must be
augmented by the addition of a body-force term equal to -CVE
[see Eq. (13)]. After the curl of the momentum equation is taken
to eliminate the pressure variable and the equation is rendered
dimensionless, the result is
48 3o

3 38 sin6 (44)

e4¥) =

2 ) sing 3 13
vhere g "'a'p'f*‘ o2 28 \ sIng 28

If aa were not smaller than C.» the solute concentration
would be negative on the low-concentration side of the particle.
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~ -1
p=1 ¥y=0 |, 5;=0 (1)
p e "47-0%?1';:2 sinze (i)

Condition (i) says v=0 on the particle surface (remember that the
coordinate system moves with the particle), while (ii) says
v > —ﬁ far from the particle. To determine ﬁ we use the phore-
tic condition (29), which requires the stream function to
28
satisfy ~ lea 2 2
¥ ->Up sin®

lim | —2 =0 . (1ii)

poten P

Note that to derive (44) the solute-particle potential ¢
was assumed to be independent of 6 (i.e., the surface of the
particle is homogeneous) and solute concentration.

Because the range of ¢ is quite short compared to the
particle radius, the above equations are very different inside
the interfacial region (p-1 <, where A=L/a) compared to the
outer region (p-1 >> X). This difference suggests that the solu-
tion to (41) and (44) should be approached through a method of
matched asymptotic expansions. The variable y =(p-1)/X is used
within the interfacial region (y ~ 0(1)), while p is used in
the outer region. The dimensional particle velocity is expanded

in powers of A as

2
g=g°[1+c1x+czx + ... (45)

where Ho is given by (37) and is independent of Pe, or Pe but

1 2°
the coefficients <. could be functions of the Peclet numbers. For
negligibly small Peclet numbers the solution to (41) and (44)
gives18

= Pe2 =0 : ¢ = - [ X + S 1 (46)

Pey Lt

where K is given by (9) and
o0
2
J ¥y~ [exp(-%) - 1] dy
0
H =l-12-"- )
[[7temen - 11
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In general, H ¥ L << K so that (45)-(46) can be approximated by:

Pe, = Pe, = 0 : g-go[1-§+0(x2)] . (&7

Thus the first correction for particle curvature is O(K/a) rather
than 0(1); that is, "thinness" of the interfacial region is
determined by K, not L. In other words, (37) gives the particle
velocity only when K/a << 1, which could place severe restric-
tions on how large a must be for systems with K values of order

lpym or larger.
14,26 . .
with a mathematical structure similar to
is O(Pez) with a coeffi-

2 2 2

cient near unity. Sample calculations indicate Pe2 << 1077, S0

=0 is probably reasonable for most situa-

In problems

that above, the dependence on Pe

that the assumption Pe2

tions. On the other hand Pe1 could be one or larger so its effect

should be considered. To do this one must return to the analysis
of (41) in the inner region at 0()2). Referring to Eq. (2.18)

of Anderson et 31.18, the function A2 is modified by adding

the term

1

pe, A"0 vi, (cos0)”! (48)

1
where vil is the 0(X) contribution (the leading non-zero term)
to the r component of fluid velocity in the inner region and is
determined using the o(xo) contribution to v: [vx in Eq. (16)]
and the continuity equation:
y 8
i A_cosd
vy = - 3220 [yt gy [ fempae) - 1 e 49)
0 y
2
(A = L¥/L)

Proceeding with the analysis as described by Anderson et 31.18

and matching inner to outer solutions gives a coefficient b

1
which has an additional term proportional to Pel. Using this
augmented b1 in the analysis of (44) gives the following

dimensional result:

B=g, (L= +ure) X4oat (50)
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2

1
v =3 dy (exp(-8(y*)) - 1]
L*K J‘0 Iy

where y is now dimensional and equal to r-a, i.e., the distance
from the particle surface. v equals 1/3 if ¢(y) is a step func-
tion and 1/2 if ¢ is a Dirac function.

A reduction in speed by convective transport of solute can
be rationalized as follows. As the particle moves through the
solution, solute builds up on the forward pole (8=0) at a
rate " UCQ(EO), while solute is depleted at the other pole
(6=n) at the same rate. Due to the force -E'(y) by the particle
on each solute molecule, this excess solute creates an additional
pressure over the front hemisphere which opposes its motion
forward.

According to (50), which can be applied when Pe2 << 1 and
H << K, there are three groups of parameters which control the
particle velocity induced by a gradient: L*K, K/a, and uPel,
where the appropriate definitions of parameters are given by Egs.
(18) and (43). The range of validity of (50) can probably be
extended to larger values of K/a by using the Padé approximant,

K -1
U=y, [1 + (L+uPe;) 3 ]

Electrolytes

Except for the differences already noted in the analysis
for infinitesimally thin interfacial layer, the electrolyte prob-
lem with finite interfacial layers is very similar to that for
nonelectrolytes. Consequently the analysis of Prieve et 31.19 for
electrolytes (which is more cumbersome than that for nonelectro-
lytes) will not be outlined here, but one intermediate result is
worthy of note. Through a judicious combination of the dependent
variables, the perturbation in the potential field u, caused by
the macroscopic concentration gradient, can be eliminated from

the problem. In particular, the boundary condition for the
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perturbation in u at r=a is not used in predicting the velocity.
Thus we do not need to specify how the surface charge or zeta
potential will change in response to a change in ilonic strength;
the only property of the charged interface which must be known to
predict the velocity is its zeta potential in a uniform solution
of concentration Cw(go).

The particle velocity induced by a macroscopic gradient in

: . 1
concentration of a z-z electrolyte is given by:

1 (2 a3 LGB} rme, o

with an error of O(AZ) and O(uz). Note that in the limit
2=0 the above expression agrees with (38). The effect of finite
A is to retard the particle velocity. The correction -3 for
the electrophoretic component is identical to the 0O(1) correc—
tion at |uS| <1 for electrophoresis.2

A superficial comparison between (51) and (50) would seem
to indicate that the O(X) correction for electrolytes is consid-
erably weaker than for non-electrolytes. However, we must keep in
mind that (51) assumes |us| <1 for which the adsorption length
is small [K=0(n_1)].

Roman32 has obtained a mnumerical solution for the chemipho-
retic contribution using arbitrary values of ug and A. In
the limit A + O, his results confirm both (38) and (51). In the
other extreme (X + =) where the particle behaves like a point
charge, the chemiphoretic velocity becomes vanishingly small. The
reduction in speed as X becomes large is already evident in the
-21x/2 term of (51). Finally, when |us| is increased holding
A fixed, Roman observed that the chemiphoretic velocity first
displays a maximum value before decaying to zero as lusl + @
This might be rationalized by noting that as lus| increases, the
adsorption length K also increases., If |us| is large enough,
K/a might be large even though X << 1: apparently the parti-
cle behaves like a point charge (which has vanishingly small

chemiphoretic velocity) when either K/a + = or A + =,
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The O0()A) correction given by (51) is wvalid through
O(ui). Prieve et 21.19 also computed the O0(}) correction
for arbitrary u. For larger values of ugs the O(XA) correc-—

tion grows exponentially with |us|.

EXPERTMENTAL OBSERVATIONS

As early as the 1920's, rubber gloves and other articles of
rubberized clothing were made from natural latex by a process
called ''coacervate dipping".33 In this process, a form is first
coated with salt crystals or a film of a concentrated salt
solution and then immersed in a concentrated dispersion of latex.
After a brief exposure, the form is coated by coagulated latex. A
simple explanation is that the high concentration of salt induces
localized coagulation at the surface of the form. However, to
form a deposit of a given thickness, a region several times
thicker than this deposit must be depleted of latex. Simple
diffusion of 1latex particles cannot explain the high rate of
deposition observed. Some other transport mechanism is respon-
sible. Derjaguin et gl.l suggested diffusiophoresis as the
mechanism.

Dukhin and Zueva34 investigated the deposition process
experimentally by using a cellophane membrane to separate a CaCl2
solution from the latex. Diffusion of the salt through the porous
membrane induces deposition of the latex. This arrangement allows
both the salt and latex concentrations to be varied. Although
they report difficulties with gravimetric determination of the
rate of deposition, they were able to detect the existence of
deposits visually. The formation of deposits from very dilute
dispersions (0.1 wt % solids) confirms the existence of some
transport mechanism which concentrates the latex at the sgyface.
They observed that, below some critical concentration of salt, no
deposit is obtained. This critical salt concentration increases
with increasing latex concentration. They concluded that this
behavior resulted from ions contained in the serum of the latex,

which either diffuse countercurrently to the CaCl2 and reverse
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the direction of diffusiophoresis, or chemically react with the
Ca\Cl2 and precipitate it from solution. Derjaguin et Q.BS have
performed similar experiments in which the effect of adding
electrolyte to the latex dispersion was studied.

Lin and Prieve36’37

have reported gravimetric measurements
of the rate of deposition of colloidal latex onto a porous
polycarbonate membrane through which a salt diffuses. They mea-
sured the rate of deposition of either anionic or cationic latex
(0.5 wt % solids), induced by diffusion of any one of a dozen
different electrolytes, and correlated their results with the
"diffusion potential' measured across the membrane. They examined
the effect of the concentration of the.salt solution placed on
the salt-side of the membrane, the effect of any supporting
electrolyte added to the serum of the latex, and the effect of
agitation rate. All of their results are consistent with a model
in which the rate is determined by the electrophoretic migration
of the latex particles in the electric field induced at the outer
edge of the deposit by the diffusion of salt. In these experi-
ments, the addition of a second salt in equal concentrations on
both sides of the membrane decreased the rate of deposition
induced by diffusion of the first salt by weakening the electric
field. This effect could also lead to a critical concentration of
the first salt required for deposition as reported by Dukhin and
Zueva.34

Microscopic observations of single particles moving in a
salt gradient have also been attempted. Derjaguin et gl.38 looked
downward along a tangent to a vertical cellophane membrane to
observe anionic latex particles moving toward or away from the
membrane as salt diffused through it in an unsteady manner.

Placing a solution of KCl or CaCl, on the opposite side of the

membrane from the latex, the 1atix particles were induced to
migrate toward the membrane; whereas placing distilled water on
one side of the membrane and the salt and latex on the other
side, the 1latex particles moved away from the membrane.

Velocities up to 1lum/s were observed in CaClZ, but they were



16: 58 30 January 2011

Downl oaded At:

DIFFUSIOPHORESIS 95

considerably smaller in KCl. The direction in which migration
occurred in each of these experiments is consistent with that
predicted by Eq. (38). A lower speed is also expected for KCl

(B = 0) since the electrophoretic contribution (which, in the
case of CaClz, acts in concert with the chemiphoretic contribu-
tion) is vanishingly small. Although Derjaguin et 21.38 concluded
that KCl1 gradients do induce migration of latex particles, Lin

6,37 . P A
36, saw no evidence of a significant deposit in the

and Prieve
absence of an induced electric field.

Natural convection is one source of error in local micro-
scopic observation. If salt is diffusing through the membrane
into the latex, then the layer of solution next to the membrane
on the latex side will be more dense than the solution far away.
This generates downward motion across the face of the membrane
and draws fluid toward the membrane at the top of the cell where
the microscopic observations of particle motion are made. Con-
versely, if salt diffuses from the latex into the membrane, the
solution next to the membrane will be less dense and convection
will occur in the opposite direction. Unfortunately, in all the
cases examined by Derjaguin et gl.38 the observed particle motion
occurs in a direction which coincides with that of natural con-
vection. Another source of error is osmotic flow through the
membrane which is expected as a result of the concentration
difference across it. For such an experiment to be compelling,

the effect of natural convection and osmotic flow must be

"assessed independently of diffusiophoresis.

Carr39 microscopically observed the motion of 3um anion-
ic latex particles in a sealed capillary whose axis was oriented
vertically. An unsteady salt gradient was created by the dissolu-
tion of a salt crystal, introduced at the bottom end before
sealing. With the more dense solution on the bottom, natural
convection is avoided. Although sedimentation is now important,
this contribution to particle motion can be independently
assessed by observing the particle before the salt has had time

to diffuse to its vicinity. When NaCl (B < 0) was used as the
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salt, the concentration gradient attracted the particles toward
the crystal with a speed considerably above that due to sedimenta-
tion; whereas particles from the same latex were repelled from a
3 (B >0). Results with KCl or KNO, (8 % 0)

were Inconclusive Dbecause a volume change upon dissolution

crystal of KIO

ruptured the seal.

APPLICATIONS

Perhaps the oldest commercial process in  which
diffusiophoresis of hydrosols is known to be involved 1is
“"'coacervate dipping",33 which was‘described in the previous sec-
tion. Several variants of this process, which is used to apply
latex coatings, have been assigned other names such as '"coagulant
dip," the '"Anode process' or the 'US process“.40

A more recent process is Autophoretice)deposition, which
is currently used to apply the first layer of paint on automobile
frames and other metal massware.41 Instead of applying a film of
salt on the metal prior to immersion in the latex, an acid and an
oxidizing agent are added to the latex. Dissolution of the iron
in the steel during immersion produces ions which attract latex
particles to the steel and cause local coagulation. Using a
formulation containing latex (5 wt % solids), HF and H202, Prieve
et 31.42 confirmed patent claims and observed that the rate of
deposition was linked to the rate of dissolution of the metal.
They subsequently showed that the same process was capable of
coating other metals like zinc, whose salts do not cause floccula-
tion of the latex.43 They proposed migration of the negatively
charged latex particles in the electric field induced in the
boundary layer by dissolution of the metal as the rate-
determining step for deposition. This mechanism was later
confirmed by Smith and Prieve.8 A similar process for depositing
latex on copper has been investigated by Derjaguin et gl.4

Another possible application 1is enhanced deep-bed filtra-
tion. Fowkes et al. > reported a significant enhancement in the

coalescence of emulsions by packed beds when mixtures of grains
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from two metals were used as packing compared to beds having all
grains composed of the same metal. In their studies, the grains
were composed either of C, Al, or Fe. They explained the enhance-
ment by observing that a difference in oxidation potential could
arise across the solution separating two grains composed of
different metals. This potential difference, which would attract
charged droplets to one of the grains, is zero when the two
grains are composed of the same material. Thus the process was
named "bimetallic coalescence'. In a series of experiments compar-
ing the performance of a C bed or an Al bed with one having a
mixture of the two grains, the mixed bed clarified the haze
caused by the oil droplets much better than the C bed, but the Al
bed performed almost as well as the mixed bed. In a second
series, C, Fe and C/Fe beds were compared. Results similar to the
first series were obtained except that a precipitate of Fe(OH)3
accumulated in the bed, which clearly indicates dissolution of
the metal has occurred.

An equally plausible mechanism 1is the diffusiophoretic
migration of droplets to the dissolving metal grains. The differ-
ence in oxidation potential may serve to increase the dissolution
of Fe or Al instead of directly causing a potential drop across
the solution. Considering only the electrophoretic contribution
to diffusiophoresis, the resulting average flux of particles to

the surface of the grains is given by:

N, =mE cp = m(Aw)cp b, (52)

where m is the electrophoretic mobility of the particles, cp is
their concentration in the interstitial fluid, E = (Aw)/sS is
the electric field induced by the diffusion of the salt, and AV
is the diffusion potential induced across the diffusion boundary
layer of thickness GS. In the absence of diffusiophoresis, the
deposition of sub-micron particles occurs mainly by convective

diffusion, whose rate is given by:

[
N, =D £, (53)
P
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where Dp is the diffusion coefficient of particles and 6p is
the thickness of the boundary layer for the diffusion of parti-
cles. According to the Levich-Lighthill equation for convective
diffusion to a sphere § « D—1/3. Thus dividing (52) by (53)

yields:

) D_.1/3
Y _mw) %s _meawd 2 VY
N D 8 D D (54)
D P P P 8
. -4 2 -1 -1
Substituting some typical values (m=10 cm -v "-s T, Ay = 25mV,
Dp = 10—8 cmz/s, and DS = 10'-5 cmz/s), this equation predicts an

enhancement in filtration efficiency of 25 fold.

Ghosh and Brown46 made quantitative measurements of
efficiency of removal of o0il from oil-in-water emulsions by deep
beds packed with C, Al and/or Fe grains. They studied the effect
of flow rate, bed depth, porosity as well as changes in
efficiency with time as precipitate and oil accumulate in the
bed. As usual for deep-bed filtration, the fraction of oil in the
effluent was found to decay exponentially with the depth of the
bed. This overall behavior is consistent with a local deposition
rate of droplets onto the grains which is first order with
respect to droplet concentration — as in (52) and (53). The
proportionality constant in the exponent is called the '"filter
coefficient." If the local deposition rate is determined by the
electric field, and if the electric field is the difference in
oxidation potentials divided by some average interparticle
spacing, then the filter coefficient would be inversely propor-
tional to the flow rate through the bed. The experimental data
plotted on log-log paper display a slope which is considerably
less negative than -1, which suggests that the local electric
field must increase with flowrate. Since Gs in (52) is expected
to shrink with increasing flowrate, electrophoretic migration of
the droplets caused by dissolution of the metal grains is con-
sistent with these observationms.

Liberman et 3l.47 repeated the measurements of Fowkes et
al.45 They confirmed the effectiveness of beds having mixtures of

metal grains in removing oil droplets; however, they noted that



16: 58 30 January 2011

Downl oaded At:

DIFFUSIOPHORESIS 99

some granular beds composed of a single metal are just as
effective, They deduced that the potential difference across the
interstitial solution between dissimilar grains is only 14mV
compared to a difference in oxidation potentials of nearly 800mV.
Filtration of dilute, submicron, polystyrene latexes by beds
packed by mixtures of metal grains was also studied. Some mix-
tures were very effective while others were not. In addition to
intimate mixtures of two types of grains, they also tried arrang-
ing the two types of grains in two layers. For a given pair of
metals, nearly the same results were obtained in either con-
figuration. This indicates that the distance separating the
different metals is not important. Finally they conclude that in
order to obtain a high efficiency of filtration, the metal grains
must corrode. This correlation between deposition rate and metal
dissolution rate was also found in the coating experiments of

8,42,43 It provides additional evidence for a

Smith and Prieve.
common mechanism.
If dissolution of metal is required for enhanced filtra-
tion, the grains of the bed will have a limited lifetime. If the
enhancement by metal dissolution occurs because of an induced
diffusion potential (the Vy in Eq. (52)), then nomnmetallic
grains which promote diffusion of ions toward or away from their
surface should also enhance filtration. For example, the counter-
current diffusion of ions which occurs within ion-exchange resin
beads will induce a diffusion potential. Beds of ion-exchange
beads can be easily regenerated, providing an almost unlimited
lifetime. In a preliminary study, FitzPatrick et 31.48 showed
that ion-exchange could enhance filtration of micron-sized la-
texes by up to five fold. Filtration of biological organisms in
beds of ion-exchange resins is an important process in industrial

. . . 49 ;
fermentation. A review by Daniels contains over 500 references.

SUMMARY

i
Diffusiophoresis 1is the locomotion of a rigid colloidal

particle which 1is induced by a macroscopic gradient of solute
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concentration. In this paper we have reviewed both the theory and
experiments on diffusiophoresis of hydrosols. In order for a
solute gradient to induce motion, there must be some interaction
(e.g. electrostatic or van der Waals) between any solute molecule
and the colloidal particle. This might be manifested as physical
adsorption of the solute into the interface between the particle
and the solution. The interfacial region must extend a few solute
diameters from the solid if the motion is to be measurable.
Derjaguin and his Soviet coworkers first recognized this
phenomenon and first predicted the relative speed between the
fluid and the solid in the simple geometry of a flat plate.l’15
Their later experiments confirmed that migration of latex parti-

34,35

cles can be 1induced by salt gradients. More recently, we

extended the analysis to spherical particles of finite radi-

18,19
us.

For both electrolytes and uncharged solutes, the leading
term in a power series expansion of the speed (in terms of the
ratio of the thickness of the interfacial region to the particle
radius) is identical to Derjaguin's result for the flat plate.
The second term in this expansion (the leading term of the
correction for curvature) is negative; thus curvature tends to
retard the particle's speed. To neglect curvature, the particle's
radius must be much larger than the adsorption length as well as
the thickness of the interfacial region. Prieve and Roman have
numerically obtained a more general solution for the case of
electrolytes.32 Recent experiments with commercial latexes in

salt gradientsg’36

can be entirely explained by electrophoresis
in the induced electric field; chemiphoresis, the second contribu-
tion to locomotion, seems to be far less important in these
systems.

Commercial applications of diffusiophoresis include
processes for forming rubber gloves and paint films.
Diffusiophoresis can also enhance the efficiency of deep-bed
filtration. Since the direction of net migration is predicted to
depend on the size and charge of the particle, diffusiophoresis

might be applied to the analysis of particle mixtures. Finally,
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we might speculate that there 1is some relationship between

chemotaxis of biological cells and diffusiophoresis.
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