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SEPAFUTTON AND PURIFICATION METHODS, 13( 1) , 67-103 (1984) 

DIFFUSIOPHORESIS: MIGRATION OF COLLOIDAL PARTICLES 
IN GRADIENTS OF SOLUTE CONCENTRATION 

John L. Anderson and Dennis C. Prieve 
Department of Chemical Engineering 

Carnegie-Mellon University 
Pittsburgh, PA 15213 

ABSTRACT 

When a rigid colloidal particle is placed in a solution 

which is not uniform in the concentration of some solute that 

interacts with the particle, the particle will be propelled in 

the direction of higher or lower concentration of the solute. The 

resulting locomotion is called diffusiophoresis. Experimental ob- 

servations and theoretical predictions of the migration velocity 

of hydrosols are reviewed. Present commercial applications in- 

clude the formation of rubber gloves and the deposition of paint 

films onto a steel surface. New applications to the analysis of 

colloidal mixtures and solid-liquid separation are suggested. 

INTRODUCTION 

Driving forces for transport of colloidal particles gen- 

erally include concentration gradients of the particles them- 

selves (diffusion), electrical fields (electrophoresis), 

gravitational or centripetal fields (sedimentation) and pressure 

gradients (convection). Particle movement by a thermal gradient 

(Soret effect or "thermophoresis") is sometimes utilized in spe- 

cial applications. Another driving force for transport of 

colloids is a concentration gradient of a molecular solute. 

"Diffusiophoresis" is the term broadly applied by B.V. 

Derjaugin'" to the movement of a colloidal particle in response 

to a gradient of a molecular solute. Although he apparently 
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68 ANDERSON AND PRIEVE 

intended this term to describe both fluid drops and rigid parti- 

cles, we suggest it be used only for the motion of rigid 

particles; the motion of fluid drops should be considered a 

"Marangoni effect," that is, movement generated by a surface 

tension gradient. The reason for this distinction is based on the 

difference of the role of interfacial structure in the transport 

processes within the surrounding fluid. With the diffusiophoresis 

of rigid particles, it is essential that the interaction between 

solute and particle surface be diffuse (the particle velocity is 

proportional to the thickness of this diffuse interfacial layer). 

On the other hand, the velocity of fluid drops is independent of 

interfacial structure and is proportional to the drop radius 

instead of the interfacial thickness. Because we are concerned 

with particles and drops of order lpm, which is very large 

compared to the thickness of the interfacial region, this differ- 

ence means diffusiophoretic velocities are several orders of 

magnitude smaller than typical velocities of drops. The concept 

of a diffuse interfacial region, where solute and particle inter- 

act, is made more quantitative in the text where a numerical 

criterion to judge particle rigidity is developed. 

Although diffusiophoresis of aerosols has been extensively 

~ t u d i e d , ~ - ~  there has been less attention given to diffusiophore- 

sis of hydrosols. Perhaps this lack of attention has to do with 

the fact that the steep solute concentration gradients required 

usually occur only in the diffusion boundary layer, where many 

phenomena occur simultaneously. It is quite possible that 

diffusiophoresis has, in fact, had a significant but unrecognized 

effect on particle transport rates in boundary layers during 

coating processes and in porous membranes. There is no question 

that particle movement induced by a solute gradient is important 

in microbiology , where the term "chemotaxis" denotes the loco- 

motion of living cells by gradients of chemical agents.' 

Our purpose in this review is to explain the mechanism of 

diffusiophoresis and to discuss its importance as a transport 
process for colloids. For example, Smith & Prieve8 showed that 
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DIFFUSIOPHORESIS 69 

diffusiophoresis is the mechanism of a new commercial process for 

applying the first layer of paint on automobile frames and other 

metal surfaces. Acid and hydrogen peroxide, which are added to 

the dilute water-based paint, cause the iron in carbon steel to 

oxidize and dissolve at a rate limited by diffusion of reactants 

through the boundary layer next to the metal surface. The gradi- 

ent in electrolyte concentration induces an electric field in the 

boundary layer which attracts negatively charged latex particles 

toward the metal surface. In this process, the induced gradient 

of electrical potential serves as the main driving force for 

diffusiophoresis of the latex particles. More generally, gradi- 

ents in the electrochemical potential or chemical potential of 

the particle may serve as the driving force. 

Although the model for diffusiophoresis which we discuss in 

subsequent sections utilizes surface science, mass transfer and 

fluid mechanics, an appreciation for the phenomenon can be gained 

from principles of thermodynamics. The energetics of the system 

are determined at the particle/solution interface which has asso- 

ciated with it an excess surface free energy per area 

(u), sometimes called the "interfacial tension." One may consider 

u of a fluid/fluid interface to be either a force per length or a 

free energy per area, but only the latter is reasonable for a 

solid/fluid interface. Suppose one spherical particle of radius a 
is transferred at constant temperature from a solution having 

solute concentration Cml to another solution of concentration 

Cm2. If the solute is "surface active" it adsorbs on the particle 
and lowers the interfacial tension from ul  to u 2 .  The change 

in free energy is 

2 ffi = 4na ( U ~ Q ~ )  

If Cm2 > Cml then u < u1 and AG < 0; thus, the particle 

would tend to move spontaneously. 

The above conceptual experiment is now altered by imagining 

the particle to be in a solution in which Co, is a function 
of position. The gradient of free energy for one particle is 
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70 ANDERSON AND PRIEVE 

2 VG = 4na V~J = 

Changes in surface free energy with changes in solute concentra- 

tion under equilibrium conditions are related to the extent of 

solute adsorption through Gibbs equationY9 which for dilute 

(thermodynamically ideal) solutions is 

( >, = c, kT = -kT K 

where r is the Gibbs "surface excess concentration" of solute 

(solute adsorbed to the surface per area), and K=P/Cm is called 

the "adsorption length,"1° which is a measure of how strongly the 

solute is adsorbed as Cm+ 0. The above two equations indicate 

that, when the solute adsorbs on the particle, the particle can 

lower its free energy by moving toward regions of higher concen- 

tration. Thus from thermodynamics alone, one can prove that a 

particle will spontaneously migrate toward higher solute 

concentration. 11 

The limitation of models based on equilibrium thermo- 

dynamics is, of course, that they fail to predict how fast the 

particle moves. Attempts to estimate particle velocity on phenome- 

nological grounds can lead to great error, as shown below. 

Suppose we make the reasonable postulate that velocity is 

proportional to the gradient of free energy: 

where f is some friction coefficient. To proceed further, one 

must guess what f is; one plausible choice is Stokes law: 

f=6nna, where n 
equations ( 2 ) - ( 4 )  

is the solution viscosity. When combined with 

this choice gives 
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DIFFUSIOPHORESIS 71 

which, as shown in subsequent sections, is wrong. It turns out 

that Stokes law is not appropriate here. Because diffusiophoresis 

results from a coupling between interfacial forces and fluid 

mechanics, one must address the transport phenomena occurring 

within the interfacial region at the particle/solution boundary 

in order to relate correctly the particle velocity to the physico- 

chemical properties of the solution. Although the interfacial 

region may only be of  order 102 thick, we will apply the con- 

tinuum equations of mass and momentum transport in this region, 

as found in the theoretical models for electrokinetic 

phenomena. 2 ,12  

As motivation for an analysis of transport in the inter- 

facial region, consider the interfacial-tension-driven movement 

of fluid drops. When a drop is placed in a gradient of surface- 

active solute, the high concentration (forward) pole of the drop 

experiences a lower surface tension than the rear pole. Expansion 

of regions with a low interfacial tension and contraction of 

regions with a high interfacial tension propels the drop toward 

higher solute concentration. When the solute cannot enter the 

drop, the drop velocity is 

aK kT 
EM 3T1+27 "- =- 

where ni is the viscosity of the fluid inside the drop and K is 
defined by (3). This expression was derived by Young et al.13 for 

a thermal gradient but applies equally well to a solute gradient, 

assuming the Peclet number is much less than one.14 The subscript 

M is used to emphasize that this motion is a Marangoni effect, in 

which all interfacial phenomena can be lumped into an interfacial 

tension acting at the plane of the drop surface; that is, the 

structure of the interfacial region need not be known. Note that 

if the drop is made rigid (ni + m) then EM + 0,  and hence the 

usual analysis for Marangoni motion does not predict 

diffusiophoresis. 
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72 ANDERSON AND PRIEVE 

1,2,15-17 Credit must go to Derjaguin and his coworkers for 

first predicting diffusiophoresis of rigid particles and elucidat- 

ing the basic physical principle behind it. When the adsorbed 

layer of solute is diffuse, a tangential gradient in hydrostatic 

pressure arises inside it which causes fluid elements to acceler- 

ate until the net force is balanced by viscous stress. From this 

force balance Derjaguin et a d 5  obtained the following expres- 

sion for the relative velocity between a planar solid surface 

(y=O) and the distant fluid (y + m) in which there exists a gra- 

in the concentration of an uncharged solute: dient - dCm 
dx 

0 

Urel = v(-> - V ( 0 )  = - ?( 2)s Y [ev ( Eo -kT ) -11 dY (7)  
0 

E(y) is the energy of one solute molecule at distance y from the 

solid surface. "Adsorption" means E < 0, where by definition 

E + 0 as y + m. Equation ( 7 )  indicates that if the solute ad- 

sorbs to the solid, then the fluid flows toward lower solute 

concentration, assuming the solid surface is the pore wall of a 

membrane which is mechanically held fixed. If such a membrane, 

with sufficiently large pores, separates two reservoirs of solute 

having different concentrations but equal pressure, ( 7 )  predicts 

a spontaneous flow from high to low concentration; such an 

"osmotic" flow has been observed. 

i 

17 

Derjaguin did not explicitly analyze the movement of parti- 

cles in Ref. 15.  Instead he considered ( 7 )  to be a slip velocity 

between the fluid and a solid whose mean radius of curvature is 

sufficiently large that its surface appears flat at the length 

scale (L) of the interfacial region. By changing the frame of 

reference to allow the solid to move and the fluid be stationary 

* 
Osmosis is usually thought of as a solvent flow from lower to 
higher concentration through a "semipermeable" membrane which 
totally excludes solute. In the case discussed here, the porous 
membrane actually adsorbs solute, rather than rejects it, and 
hence flow is in the opposite direction. 
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DIFFUSIOPHORESIS 73 

at y + m, he inferred the particle velocity to be -U * that 

is, the particle moves toward higher solute concentration as 
18 expected from thermodynamic arguments. A more rigorous analysis 

of particle motion shows Eq. ( 7 )  to be correct only if the 

particle radius is much greater than both L and the adsorption 

length K. 
Derjaguin also considered solutes which ionize. With elec- 

trolytes there are two mechanisms for motion.19 First, adsorption 

of ions into the diffuse part of the double layer produces a 

contribution to the particle velocity which is analogous to that 

for nonelectrolytes, except that there are now two solute species 

- the counterion, which is attracted to the charged particle, and 
the co-ion which is repelled. Deraguin et a1.l calculated their 

effects separately using Eq. ( 7 )  and then added them. For conven- 

ience, we denote the net contribution from ion adsorption as 

"chemiphoresis." The second mechanism (which we call "electro- 

phoresis") results from the electric field induced by the solute 
20 gradient when the cation and anion have different mobilities. 

This induced electric field exerts a force on the charged parti- 

cle just as an applied electric field does. Although 

chemiphoresis always pulls the particle toward higher electrolyte 

concentration, electrophoresis could cause motion in either 

direction depending on the sign of the particle's charge. Thus, 

diffusiophoresis caused by electrolytes can result in motion 

either up or down the solute gradient, whereas with non- 

electrolytes the motion is always up the gradient. 

rel' 

J- 

In this paper we discuss diffusiophoresis in terms of the 

physics and mathematics needed to understand it, experiments 

aimed at measuring it, and its importance to particle technology. 

We begin with a discussion of the role of interfacial phenomena 

in the coupling of fluid mechanics to mass transfer. This 

coupling, which occurs in an interfacial region whose thickness 
~~ 

Yk 
In principle, a repulsive interaction between the solute and the 
particle could cause motion in the opposite direction, but the 
integral in ( 7 )  is severely limited in magnitude when E(y) > 0. 
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74 ANDERSON AND PRIEVE 

is tens of xngstroms, determines the macroscopic rate pro- 

cesses. It is essential to appreciate what happens within this 

interfacial layer in order to understand why rigid particles move 

in concentration gradients. We then consider particle movement 

when the interfacial region is thin relative to the particle 

size. In this limit the relationship between particle velocity 

and solute gradient is independent of particle shape, as for 

electrophoresis. The movement of fluid drops is re-examined, this 

time with allowance for an interface of finite thickness, to 

demonstrate how the Marangoni result (Eq. ( 6 ) )  can be reconciled 

with the diffusiophoretic result as the internal viscosity of the 

drop becomes large. We then move to the analysis of particle 

motion when the dimension of the interfacial layer is not infini- 

tesimal to develop criteria for validity of the thin-layer 

results. We end with a discussion of experimental attempts to 

measure diffusiophoretic velocities, and of the importance of 

diffusiophoresis as both a transport mechanism and a basis from 

I 

which analytical methods could be developed for 

facial properties of colloids. 

THE INTERFACIAL REGION 

The Equilibrium State: 

The adsorption of an un- 

charged molecular solute from a 

fluid' phase onto a solid surface 

is quantitatively described by L 

inferring inter- 

- - - -__  
the Gibbs "surface excess" con- 

centration r (moles per area). 

As Figure 1 indicates, adsorbed 

solute does not necessarily 

stick as one layer to a surface 

but, in general, could be dis- 

r 
C 

/ / ////v/////m 
c, 

tributed non-uniformly over a FIGURE 1 
layer of thickness L which repre- Profile of solute 

concentration inside 
sents the interfacial region. interfacial region. 
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DIFFUSIOPHORESIS 75 

9 The surface excess concentration is defined as 
OD 

r = J ccw - CJ dy (8)  
0 

where Cm is the solute concentration in the bulk fluid phase. 

A l s o ,  L represents the distance from the surface over which C 
varies appreciably from Cm; it is expected to be of order 108. 

A second length scale is the adsorption length: 

which can be interpreted as the thickness of a bulk solution 

layer that has to be stripped of solute to account for the excess 

l'. Several points should be made about K. First, it is a 
mass-equivalent length and not a physical length. Second, the 

magnitude of K is a measure of the strength of adsorption: 
K >> L means the solute strongly adsorbs. It is not uncommon for 
K to be as large as 1pm.l' Third, K (and hence r )  could be neg- 
ative if solute is repelled from the surface, as is the case with 

simple electrolytes at the air/water interface. We shall demon- 

strate that K as well as L are essential parameters in the 

physics of diffusiophoresis. 

A positive value of r implies that the pressure is 

greater inside the interfacial region than in the bulk fluid. At 

infinite dilution, the Gibbs equation is given by ( 3 ) .  Theories 

of the mechanics of the interface 21'22 can be used to relate the 

decrease in interfacial free energy, caused by a change in solute 

concentration, to the integral average of the excess interfacial 

stress. OD 

(10) 
0 

where u is the interfacial free energy when C-=O and p-p, 

is the excess pressure due to the solute adsorption. Solute- 

solute interactions are neglected in (10); s o  the solute effect 
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76 ANDERSON AM, PRIEVE 

on the interfacial stress is isotropic. At higher solute concen- 

trations, where solute-solute interactions are significant, this 

isotropy is lost. 23 

Assuming K is independent of C,, (3) and (10) are com- 

bined to give o. 

1 (p-p,) dy = C,K kT = rkT , (11) 
0 

which clearly demonstrates that p > p, within the interfacial 

region if solute adsorbs to the surface. In addition to its 

mass-equivalent definition, K in (11) represents the distance 

over which the osmotic pressure CmkT acts on the fluid. 

Of central importance is the distributed nature, or diffuse- 

ness, of the solute adsorption. A potential energy E(y) is 

defined in terms of the solute distribution using Boltzmann's 

equation: 

C(Y> = C, e d - E  (Y> /kTl (12) 

where it can be shown24 that -E'(y) is a force acting on a solute 

molecule when it is at distance y from the surface. This energy 

represents the sum of solid-fluid-solute interactions relative to 

fluid-solute interactions in bulk fluid; thus, E -c 0 as 

y + m. At low concentrations this force is transmitted to the 

solvent to establish a pressure gradient across the interfacial 

region: 

3 + c z - o  dE * 

which when integrated with the help of ( 1 2 )  gives 

p - p, C, kT Lev(-E/kT) - 13 . 
This expression is consistent with (9) and (11). 

Flow Caused by Non-electrolyte Gradients 

In the preceding section C, was assumed uniform. Now con- 

sider a gradual variation parallel to the surface such that 

locally C,(X) = Cm(xo) + (x-xo)CL(x). If the distance over 

which Cm changes appreciably, Cm/CL, is large compared to L, 
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DIFFUSIOPHORESIS 77 

one can assume t h a t  E q s .  (12)-(14)  a r e  v a l i d  l o c a l l y .  Although 

t h e  p r e s s u r e  o u t s i d e  t h e  i n t e r f a c i a l  l a y e r  (pm)  i s  c o n s t a n t ,  

t h e r e  e x i s t s  a t a n g e n t i a l  p r e s s u r e  g r a d i e n t  w i t h i n  t h e  i n t e r f a c -  

i a l  r e g i o n  because of t h e  v a r i a t i o n  of Cm, a s  seen  from (14) .  As 

a r e s u l t  of t h i s  p r e s s u r e  g r a d i e n t ,  t h e  f l u i d  e lements  a c c e l e r a t e  

u n t i l  t h e  v iscous  s t ress  ba lances  t h e  p r e s s u r e  g r a d i e n t :  

Boundary c o n d i t i o n s  a r e  

y = e :  v = o  (no slip a t  s o l i d  s u r f a c e )  
X 

av 
aY 

y 4 m: 2 4 0 (no p r e s s u r e  g r a d i e n t s  i n  bulk f l u i d )  

S u b s t i t u t i n g  (14)  i n t o  (15)  and i n t e g r a t i n g  twice g i v e s  

which p r e d i c t s  t h e  p r o f i l e  qual-  

i t a t i v e l y  shown i n  F igure  2.  

Note t h a t  o u t s i d e  t h e  i n t e r -  

f a c i a l  reg ion  ( i . e . ,  y 2 L ) ,  

v t a k e s  on i t s  asymptot ic  

v a l u e  as y + m. Compared t o  

t h e  much l a r g e r  r a d i u s  of curva- 

t u r e  of t h e  s u r f a c e ,  t h e  th ick-  

n e s s  of t h e  i n t e r f a c i a l  r e g i o n  

over  which v v a r i e s  cont in-  

uously from zero  t o  i t s  upper 

l i m i t  i s  so small  t h a t  t h e  

v a l u e  of v obta ined  by r e p l a c -  

i n g  y i n  (16)  by m can be 

t r e a t e d  a s  a " s l i p  v e l o c i t y "  a t  

t h e  macroscopic s c a l e .  A f t e r  

X 

" re1 

FIGURE 2 
V e l o c i t y  p r o f i l e  i n s i d e  

i n t e r f a c i a l  reg ion .  
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78 ANDERSON AND PRIEVE 

integration by parts, this slip velocity is given by ( 7 ) .  

The form of ( 7 )  is not useful because there are no direct 

methods of measuring E(y). However, the integral is related to 

two length scales which characterize E(y): 

L*K kT dC- Urel = - - - 71 dx 

where K is given by (91,  or 

rn 

and 

K = i0 [eXp(-E/kT) - 13 dy 

K is a measurable parameter, since r can be determined as a 

function of Cm at equilibrium. Although LJ: is not directly mea- 

surable, it has the same order of magnitude as L. 18 

The applicability of continuum mechanics could be 

questioned if L* < 108, but thermodynamics leaves no doubt that 

a solute gradient will cause flow. In addition, there are two 
other implicit assumptions: The surface is smooth, and there are 

no kinetic barriers to the adsorption and desorption of solute. 

Equation (17) shows the importance of the diffuseness of 

the interfacial layer. Even though K may be large, if the solute 
were actually adsorbed on the surface rather than in a diffuse 

layer then L* and LI vanish. It is not enough for the adsorp- 

tion to be strong; the adsorbed layer must extend several solute 
diameters away from the surface to achieve meaningful velocities. 

Flow Caused by Electrolyte Gradients 

re1 

If the solute dissociates into ions, the analysis of stress 
and flow within the interfacial region is more complex because 
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DIFFUSIOPHORESIS 79 

two species must be accounted for as well as the local electro- 

static potential. However, in the case of electrolytes, the 

thickness of the interfacial region is known a priori: 

where n is the Debye screening parameter that appears in equi- 

librium double-layer theory. We limit our discussion to 

electrolytes where cation and anion have the same charge number 

(2). 

Under equilibrium conditions the ion concentrations at dis- 

tances of n or less from a charged surface differ from their 

bulk values. The ion distributions in this region are 

-1 

c+ = C, exp[pe(Y-Ym)/kT] 
- 

where the upper and lower signs refer to cation and anion, 

respectively. In diffuse double-layer theory (i.e., the Gouy- 

Chapman model ) Eq. ( 2 0 )  is used to compute the space charge in 

Poisson's equation (the continuum representation of Coulomb's 

law). The result is the Poisson-Boltzmann equation which has the 

following solution: 

9 

tanh(ul4) = y exp(-ny) (21) 
u = ze(Y-Y,)/kT 

y = tanh(us/4) 

where u is the potential at the surface (i.e., the "zeta 

potential"), rendered in dimensionless form. The pressure varia- 

tion within the interfacial region is obtained by balancing the 

normal component of the pressure gradient with that component of 

the electrostatic body forces acting on a fluid element: 

2 + ze (c+ - C-) - dy = 0 . 
dY dY 

Integration produces the following result when (20) is used: 

p-p- 2CmkT [cosh(u) - 13 . 
Because cosh(u)-1 is an even function and always positive, 
p-p, > 0 within the double layer no matter what the sign of u(y). 
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80 ANDERSON AND PRIEVE 

If the bulk concentration Cm changes gradually enough 

along a parallel to the surface, ( 2 3 )  still can be applied 

locally, but p now depends on x; ap/ax is not balanced by 

the x-component of the electrostatic body force. Using (20),  ( 2 3 )  

and the definition of u, the net tangential force per volume 

acting on fluid elements is found to be: 

!& + ze(C+-c-) ax ax dx = 2kT [cosh(u)-l] dCm + ze(C+-C-) - dYm (24) 

If the cation and anion diffusion coefficients (D and D-) are 

not identical, the gradient in concentration of salt in the bulk 

fluid gives rise to a "diffusion current," since one ion diffuses 

more rapidly than the other. To prevent a continuous separation 
of charge, an electric field spontaneously arises in the bulk to 

produce an "electric current" which exactly balances the 

diffusion current. The necessary electric field is given by: 20 

Generally, the right-hand-side of ( 2 4 )  is nonzero, so the fluid 

elements accelerate until viscous stresses bring the forces into 

balance. Equating the right-hand-side of ( 2 4 )  with T e  and 

ing (20) to express C+-C- in terms of u yields: 

2 d v  

dY 
us- 

The second term on the right-hand-side of ( 2 4 )  or ( 2 6 )  results 

from the induced electric field acting on the space charge in the 
double layer; this gives rise to the "electrophoretic9i contribu- 

tion to relative motion between fluid and solid. The first term 

is associated with net adsorption of the electrolyte: 
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ID 

's, 
and produces the 

B 

[C++C--2Cm] dy = 2C, [cos~(u)-~] dy (27) 
S O  

"chemiphoretic" contribution. After substituting 

( 2 1 ) ,  the integration of (26) gives the relative velocity between 
fluid and solid: 

where y is given under ( 2 1 ) .  Note that chemiphoresis [the second 

term in ( 2 8 ) ]  

but electrophoresis could cause motion in either direction depend- 

ing on the sign of the product Bu . It appears from (28) that 
the relative fluid velocity is proportional to dhCm/dx rather 

than to dCm /dx, but this is not necessarily so  since u and 

hence y ,  could also depend on Cm. 

always tends to move the fluid toward lower Cm 

S'  

PARTICLE MOVEMENT: INFINITESIMALLY THIN INTERFACIAL LAYERS 

In the previous section we examined fluid motion generated 
by a solute concentration gradient directed parallel to an infi- 

nite planar, solid surface which was considered stationary. These 

results can be applied to large particles of arbitrary shape to 
obtain the diffusiophoretic velocity in a stagnant fluid. By 

"large" we mean a particle whose surface appears flat on the 

local scale of the interfacial region. As shown in the next 

section, this means that the mean radius of curvature of the 

particle surface is everywhere much larger than both L and the 

adsorption length K. 
Outside the interfacial region (y >> L) the solute gradi- 

ent generates no force on the fluid. Consider an imaginary 

boundary 2 which encloses the particle but is never closer than 

several L from the particle surface. Because no forces act on the 

fluid outside do, the velocity field 1 must be of such form that 
the net fluid force acting on d from the outside is zero. 

(Note that the coordinate system moves with the particle, so 

1 + -x at great distances from the particle, where 1 is the 
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82 ANDERSON AND PRIEVE 

particle velocity in a laboratory-fixed coordinate system.) For 

an incompressible Newtonian f1,uid this zero-force constraint is 

written as 

where the unit normal ; points out of the region enclosed by 
2,. Velocity fields satisfying (29)  but having viscous character 

inside the interfacial region are called "phoretic flows." Other 
examples of this type of flow are electrophoresis of charged 

particles 12925 and vesicle movement in an osmotic gradient. 26 

We now demonstrate that the results for a flat surface, 

Eqs. (17) and (28 ) ,  also give the diffusiophoretic velocity of a 

rigid particle of arbitrary shape in the limit that both L/a and 

K/a tend to zero, where a, is the mean radius of curvature of the 
particle. Suppose C,(x) is the undisturbed solute concentration 

at position 5 in laboratory-fixed coordinates, and x is the 

instantaneous position of the center of the particle and r=x-x . 
Outside the thin interfacial region the concentration C ( 2 )  must 

satisfy the conservation equation: 

a 
-0 

(30) 
2 v c = o  

Convection of solute can be neglected in (30) due to the small ve- 
locities typically expected. As the surface of the particle is 

approached, but staying outside the thin interfacial region, the 

flux of solute normal to the surface approaches zero. In the 

limit we have 

(ii> 
+ 
P 

o n d  : - n * V C  = 0 

where the + on 2 emphasizes that this condition applies immedi- 

ately outside of the interfacial region. Condition (ii) says that 

the interfacial region is so thin that it cannot accommodate a 

finite flux of solute into it from the outside region. 

P 

The velocity field in the r coordinate system must satisfy 
the Stokes equations, 
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r + = :  - -  v + - U  ( i) 

where 2 is the particle velocity. must also satisfy the 

phoretic condition ( 2 9 ) .  A field which satisfies these equations 

is 
- v = - O d  (32)  

(33 )  

r + = :  V ~ - + V  ( i) 

2 
S d = O  

where 4 is a scalar function of r .  By the same arguments used 

for the solute, the fluid cannot enter the thin interfacial 

region: 

(ii) 
+ 
P 

o n 2  : - n i v d =  0 

Note from (30) and (33) that C and 6 must satisfy the 

same differential equation and very similar boundary conditions 

[(30-i) could be replaced by VC + VC-1. To fully connect the 

two variables we must consider the solute flux and fluid velocity 

directed parallel to the surface p.  If we use the results of 

the preceding section there obtains 
P 

+ 
P - -re1 o n J  : v = U  = b U c  ( 3 4 )  

The coefficient b is determined from ( 1 7 )  for non-electrolytes 

and (28) for electrolytes. Combining ( 3 4 )  with boundary condi- 

tions (30-ii) and (33-ii) we have 

(35)  
+ 
P 

on fp : V d  = -b VC 

By examining (301, (33) and (35) one finds that a new variable 
Y : 4 +bC must satisfy 
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a4 ANDERSON AND PRIEVE 

These equations overspecify Y unless 2 = -bVCm; then the solu- 

tion is Y=O everywhere. Thus the relationship between the 

velocity and the concentration gradient in the bulk turns out to 

be identical to ( 3 4 )  which relates the same quantities at any 

point on the outer boundary of the interfacial region. This gives 

the following expressions for particle velocity: 

L*K kT Non-Electrolyte: U = - 
-0 7 (from (17)) 

(37) 

The subscript "0" emphasizes that these results are only valid in 

the limit K/a + 0 and L/a .+ 0. 

The above analysis shows that U is independent of particle 

size and shape. Interfacial properties control the velocity for a 

given solute gradient. In the case of non-electrolytes, K can be 
determined experimentally by equilibrium adsorption studies, but 

there seems to be no direct method of determining L* from an 

independent experimental observation. For electrolytes all that 

is needed is the dimensionless zeta potential (u ) which can be 

determined experimentally by electrophoresis or sedimentation 

potential, or theoretically from a knowledge of the density of 

charge groups on the particle surface. As noted in the previous 
section, u (and hence y )  could depend on Cm so that go is 

not necessarily proportional to Vhcm. 

-0 

S 

An interesting feature of the electrolyte result is that a 

particle could move either up or down the solute gradient. The 

chemiphoresis term -2 h ( l - y  ) is always positive, tending to 

pull the particle toward higher solute concentration. On the 

other hand, 6 and u are independent parameters; if Bu > 0 

the electrophoretic effect augments the chemiphoretic effect by 

pulling the particle toward higher solute concentrations, but if 

Bus < 0 then the electrophoretic effect tends to move the par- 
ticle toward lower solute concentration. A map giving the 

direction of net motion based on Eq. (38) is shown in Figure 3 .  

2 
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Concentration 

FIGURE 3 
Map showing the direction of net migration for Ua=-. 

Because B is a parameter of the solute only, the direction and 

speed of the particle can be adjusted by appropriate selection of 

the electrolyte species, assuming it has little effect on parti- 

cle zeta potential. For example, consider a charged particle 

having u = +1 in an aqueous solution at 25OC with a gradient 

IVkC-l 2 230 an-' (i.e., an order of magnitude change in Cm 

over a distance of 0.1 mm). For two different electrolytes ( 3 8 )  

gives 
KC1 (B = -0.0067*) Uo = + 1.43 pmjsec 

Uo = - 0.84 pm/sec N a C l  (B = -0.195*) 

Thus, the same particle which migrates toward regions of higher 

KC1 concentration would migrate toward lower NaCl concentration. 

If the particle were negatively charged (u < 0), it would mi- 

grate toward higher concentrations of both KC1 and NaC1. 
13 

in an effort to determine how it relates to diffusiophoresis. We 

have solved the system of equations describing a spherical fluid 

At this point we should re-examine the Marangoni analysis 

J 

"Estimated from limiting ionic conductance. 
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86 ANDERSON AND PRIEVE 

drop of radius a placed in a non-electrolyte gradient, assuming a 
thin interfacial region (K/a .* 0) and no solute can enter the 

fluid inside the drop.18 The result for the drop velocity is 

] 9 QC, (39) 

Because L* << a, the term accounting for diffuseness of the 

interfacial region is negligible when ni % n so that (39) 

agrees with (16) under this condition. As the drop is made more 

viscous, however, the diffuseness becomes more important and must 

be considered when rli z n a/L*. Equation (39) reconciles 

diffusiophoresis with Marangoni motion, giving (16) when the 

interior is fluid and (37) as the interior becomes rigid. Note 

that it is the ratio of n / n  which is important. For example, 

if L*/a = then a small drop of oil ( n  % 10-1 poise) in 

air is essentially llrigid" and Eq. (37) applies. 

i 

i'L 

The analysis leading to (37) and (38) was for a single 

particle. If a number of particles are dispersed in a finite 

volume of liquid, one might ask "at what particle concentration 

do particle-particle interactions affect these results?" The prob- 

lem examined here, in the limit K/a + 0, is mathematically 

identical to electrophoresis when Ha + -. The hydrodynamic in- 
teraction between pairs of particles, as well as the pair effect 

on the solute gradient, falls off as r-3 where r is the distance 

between particles. From the result for the electrophoresis of a 

su~pension , ~ ~  we expect the diffusiophoretic velocity of parti- 

cles at finite volume fraction (o to be 

where U is determined from (37) or (38). Thus, only if the 

suspension has a volume fraction greater than a few percent does 

one have to correct for the finite concentration of particles. 

-0 

FINITE INTERFACIAL LAYERS 

In the previous section we considered interfacial layers 
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gin 
FIGURE 4 

Schematic showing relationship between moving 
and stationary coordinates. 

which are very thin compared to particle dimensions, but no 

criterion was offered for the restriction "very thin." Thus, the 

results ( 3 7 )  and (38) must be considered limiting cases for which 
the range of validity is not known. In this section we consider 
the effect of finite values of X for spherical particles, where 

X is the ratio of the interfacial layer thickness (L or to 

the particle radius. Only a summary of the analysis for finite 

X is presented here; more details are available elsewhere. 

Non-Electrolytes 

18,19 

The problem of finding the particle velocity is most easily 

solved by working with a coordinate system ( r )  which is centered 
on and moves with the particle, as shown in Figure 4 .  Let C,(x) 
be the undisturbed solute concentration field which would exist 

in the absence of the particle, and let a be IVC,( evaluated 

at the particle's center x=x . A s  the particle migrates, its 

environment and velocity may change; however if the migration 

speed is slow enough, a quasi-steady state is achieved. The 

analysis below parallels that presented in Ref. 18, except that 
convective transport of solute is included. 

a 

Conservation of solute is expressed through the following 

dimensionless equation: 
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88 ANDERSON AND PRIEVE 

p I ) m :  c* I) p cose 

0 = E/kT is the dimensionless solute-surface energy of interac- 
tion, while C* is a dimensionless perturbation in solute 

and are the local fluid velocity and particle velocity, both 

made dimensionless by U given in (371, and p=r/a where a is 

the particle radius. The two Peclet numbers are defined as 

uaL*K kT C (x ) L*K kT 

D71 Pe2 = D7 pel - -O (43) 

Two such parameters are needed because there are two characteris- 
tic values of concentration, Cm(x ) and aa. Sample calcula- 

tions show Pe << 1 but Pel 'L 0(1), and hence Pel could be an 

important parameter in some situations. The difference in magni- 

tude between the two Peclet numbers arises because Cm>>aa 

in general. 

-0 

2 

* 
Stokes' equation for the velocity field is solved using a 

dimensionless stream function ' Y ( p , B )  which automatically satis- 

fies the continuity of mass. The momentum equation must be 

augmented by the addition of a body-force term equal to -CVE 

[see Eq. (1311. After the curl of the momentum equation is taken 
to eliminate the pressure variable and the equation is rendered 

dimensionless, the result is 

'L 

* 
If aa were not smaller than Cm, the solute concentration 
would be negative on the low-concentration side of the particle. 
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DIFFUSIOPHORESIS 89 

Condition (i) says y o  on the particle surface (remember that the 
coordinate system moves with the particle), while (ii) says 
- v + -c far from the particle. To determine we use the phore- 

tic condition (29), which requires the stream function to 

n, 

Note that to derive ( 4 4 )  the solute-particle potential 0 

was assumed to be independent of 8 (i.e., the surface of the 

particle is homogeneous) and solute concentration. 

Because the range of Q is quite short compared to the 

particle radius, the above equations are very different inside 

the interfacial region ( p - 1  2 A ,  where A=L/a) compared to the 

outer region ( p - 1  >> A). This difference suggests that the solu- 

tion to ( 4 1 )  and ( 4 4 )  should be approached through a method of 

matched asymptotic expansions. The variable y=(p-l)/A is used 

within the interfacial region (y % 0(1)), while p is used in 

the outer region. The dimensional particle velocity is expanded 

in powers of X as 

(45) 
2 - u -3 [l + CIA + c2x + ...I 

where is given by ( 3 7 )  and is independent of Pel or Peg, but 

the coefficients c could be functions of the Peclet numbers. For 

negligibly small Peclet numbers the solution to (41) and ( 4 4 )  

gives 18 

where K is given by (9) and 
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90 ANDERSON AND PRIEVE 

In general, H: L << K so that ( 4 5 ) - ( 4 6 )  can be approximated by: 

Thus the first correction for particle curvature is O(K/a) rather 

than O ( A ) ;  that is, "thinness" of the interfacial region is 

determined by K, not L. In other words, (37) gives the particle 
velocity only when K/a << 1, which could place severe restric- 

tions on how large 5 must be for systems with K values of order 
lpm or larger. 

In problems 1 4 9 2 6  with a mathematical structure similar to 

that above, the dependence on Pe2 is O(Pe2) with a coeffi- 

cient near unity. Sample calculations indicate Pe << so 

that the assumption Pe =O is probably reasonable for most situa- 

tions. On the other hand Pel could be one or larger so its effect 

should be considered. To do this one must return to the analysis 

2 

2 

2 

of ( 4 1 )  in the inner 
18 of Anderson et al. , 

the term 

i 
rl where v is the O ( X )  

to the r component of 

2 region at O ( X  ). Referring to Eq. (2.18) 

the function A 2  is modified by adding 

Pel vi r l  (case)" ( 4 8 )  

contribution (the leading non-zero term) 

fluid velocity in the inner region and is 
0 i determined using the O ( h  ) contribution to v8 [vX in Eq. (16)] 

and the continuity equation: 

Y 0 

2 
( A  5 L*K/L ) 

Proceeding with the analysis as described by Anderson 5 g. 18 

1 and matching inner to outer solutions gives a coefficient b 

which has an additional term proportional to Pel. Using this 

augmented bl in the analysis of ( 4 4 )  gives the following 

dimensional result: 
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where y is now dimensional and equal to r-a, i.e., the distance 

from the particle surface. u equals 1/3 if P(y) is a step func- 

tion and 1 / 2  if 0 is a Dirac function. 

A reduction in speed by convective transport of solute can 

be rationalized as follows. As the particle moves through the 

solution, solute builds up on the forward pole ( 8 = 0 )  at a 

rate * UC (x ), while solute is depleted at the other pole 

(&n) at the same rate. Due to the force -E'(y) by the particle 

on each solute molecule, this excess solute creates an additional 

pressure over the front hemisphere which opposes its motion 

forward. 

m - 0  

According to (50), which can be applied when Pe << 1 and 

H << K, there are three groups of parameters which control the 

particle velocity induced by a gradient: L*K, K/a, and uPel, 

where the appropriate definitions of parameters are given by Eqs. 

(18) and ( 4 3 ) .  The range of validity of (50) can probably be 
extended to larger values of K/a by using the Pade approximant, 

2 

Electrolytes 

Except for the differences already noted in the analysis 

for infinitesimally thin interfacial layer, the electrolyte prob- 

lem with finite interfacial layers is very similar to that for 

nonelectrolytes. Consequently the analysis of Prieve et a d 9  for 

electrolytes (which is more cumbersome than that for nonelectro- 

lytes) will not be outlined here, but one intermediate result is 

worthy of note. Through a judicious combination of the dependent 

variables, the perturbation in the potential field u, caused by 

the macroscopic concentration gradient, can be eliminated from 

the problem. In particular, the boundary condition for the 
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92 ANDERSON AND PRIEVE 

perturbation in u at r=a is not used in predicting the velocity. 

Thus we do not need to specify how the surface charge or zeta 

potential will change in response to a change in ionic strength; 

the only property of the charged interface which must be known to 

predict the velocity is its zeta potential in a uniform solution 

of concentration Cm(x ). , 
-0 

The particle velocity induced by a macroscopic gradient in 
19 

concentration of a z-z electrolyte is given by: 

2 - U = L( 4nq 2 )  (B~~(l-31) + uf (L - 9 X)) V 871 C" (51) 

2 3 with an error of O ( X  ) and O(us). Note that in the limit 

X=O the above expression agrees with (38). The effect of finite 

X is to retard the particle velocity. The correction - 3 X  for 

the electrophoretic component is identical to the O ( X )  correc- 

tion at Iu I < 1 for electrophoresis. 2 

A superficial comparison between (51) and ( 5 0 )  would seem 

to indicate that the O ( X )  correction for electrolytes is consid- 

erably weaker than for non-electrolytes. However, we must keep in 

mind that (51) assumes Iu I < 1 for which the adsorption length 
is small [K=O(n-l)]. 

Roman32 has obtained a numerical solution for the chemipho- 

retic contribution using arbitrary values of u and 1. In 
the limit X + 0, his results confirm both ( 3 8 )  and ( 5 1 ) .  In the 

other extreme (1 + m )  where the particle behaves like a point 

charge, the chemiphoretic velocity becomes vanishingly small. The 

reduction in speed as X becomes large is already evident in the 

-21X /2  term of (51) .  Finally, when Iu I is increased holding 

X fixed, Roman observed that the chemiphoretic velocity first 

displays a maximum value before decaying to zero as \us \  + m ,  

This might be rationalized by noting that as lusl increases, the 

adsorption length K also increases. If (us( is large enough, 

K/a might be large even though X << 1: apparently the parti- 

cle behaves like a point charge (which has vanishingly small 

chemiphoretic velocity) when either K/a + m or X + -. 

S 
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DIFFUSIOPHORESIS 93 

The O ( X )  correction given by ( 5 1 )  is valid through 

correction O(us). Prieve 

for arbitrary u . For larger values of u the O ( X )  correc- 

tion grows exponentially with 1u I .  

2 &.19 also computed the O ( A )  

S '  

EXPERIMENTAL OBSERVATIONS 

As early as the 1920's ,  rubber gloves and other articles of 

rubberized clothing were made from natural latex by a process 

called "coacervate dipping".33 In this process, a form is first 

coated with salt crystals or a film of a concentrated salt 

solution and then immersed in a concentrated dispersion of latex. 

After a brief exposure, the form is coated by coagulated latex. A 

simple explanation is that the high concentration of salt induces 

localized coagulation at the surface of the form. However, to 

form a deposit of a given thickness, a region several times 

thicker than this deposit must be depleted of latex. Simple 

diffusion of latex particles cannot explain the high rate of 

deposition observed. Some other transport mechanism is respon- 

sible. Derjaguin &.' suggested diffusiophoresis as the 

mechanism. 

Dukhin and Z ~ e v a ~ ~  investigated the deposition process 

2 experimentally by using a cellophane membrane to separate a CaCl 

solution from the latex. Diffusion of the salt through the porous 

membrane induces deposition of the latex. This arrangement allows 

both the salt and latex concentrations to be varied. Although 

they report difficulties with gravimetric determination of the 

rate of deposition, they were able to detect the existence of 

deposits visually. The formation of deposits from very dilute 

dispersions (0.1 wt % solids) confirms the existence of some 

transport mechanism which concentrates the latex at the supface. 

They observed that, below some critical concentration of salt, no 

deposit is obtained. This critical salt concentration increases 

with increasing latex concentration. They concluded that this 

behavior resulted from ions contained in the serum of the latex, 

which either diffuse countercurrently to the CaC12 and reverse 
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94 ANDERSON AND PRIEVE 

the direction of diffusiophoresis, or chemically react with the 
CaC12 and precipitate it from solution. ,1.35 have 
performed similar experiments in which the effect of adding 
electrolyte to the latex dispersion was studied. 

Lin and Prieve 36y37 have reported gravimetric measurements 
of the rate of deposition of colloidal latex onto a porous 
polycarbonate membrane through which a salt diffuses. They mea- 
sured the rate of deposition of either anionic or cationic latex 
(0.5 wt % solids), induced by diffusion of any one of a dozen 
different electrolytes, and correlated their results with the 
"diffusion potential" measured across the membrane. They examined 
the effect of the concentration of the salt solution placed on 
the salt-side of the membrane, the effect of any supporting 
electrolyte added to the serum of the latex, and the effect of 
agitation rate. All of their results are consistent with a model 
in which the rate is determined by the electrophoretic migration 
of the latex particles in the electric field induced at the outer 
edge of the deposit by the diffusion of salt. In these experi- 
ments, the addition of a second salt in equal concentrations on 
both sides of the membrane decreased the rate of deposition 

induced by diffusion of the first salt by weakening the electric 
field. This effect could also lead to a critical concentration of 
the first salt required for deposition as reported by Dukhin and 
Zueva. 

Derjaguin 

34 

Microscopic observations of single particles moving in a 
salt gradient have also been attempted. Derjaguin et al.38 looked 
downward along a tangent to a vertical cellophane membrane to 
observe anionic latex particles moving toward or away from the 
membrane as salt diffused through it in an unsteady manner. 
Placing a solution of KCl or CaC12 on the opposite side of the 
membrane from the latex, the latex particles were induced to 
migrate toward the membrane; whereas placing distilled water on 
one side of the membrane and the salt and latex on the other 
side, the latex particles moved away from the membrane. 

Velocities up to lpm/s were observed in CaC12, but they were 
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considerably smaller in KC1. The direction in which migration 

occurred in each of these experiments is consistent with that 

predicted by Eq. (38). A lower speed is also expected for KC1 

( B  = 0) since the electrophoretic contribution (which, in the 

case of CaC12, acts in concert with the chemiphoretic contribu- 

tion) is vanishingly small. Although Derjaguin et al.38 concluded 

that KC1 gradients do induce migration of latex particles, Lin 

and Prieve 36y37 saw no evidence of a significant deposit in the 
absence of an induced electric field. 

Natural convection is one source of error in local micro- 

scopic observation. If salt is diffusing through the membrane 

into the latex, then the layer of solution next to the membrane 

on the latex side will be more dense than the solution far away. 

This generates downward motion across the face of the membrane 

and draws fluid toward the membrane at the top of the cell where 

the microscopic observations of particle motion are made. Con- 

versely, if salt diffuses from the latex into the membrane, the 

solution next to the membrane will be less dense and convection 

will occur in the opposite direction. Unfortunately, in all the 

cases examined by Derjaguin et al.38 the observed particle motion 

occurs in a direction which coincides with that of natural con- 

vection. Another source of error is osmotic flow through the 

membrane which is expected as a result of the concentration 

difference across it. For such an experiment to be compelling, 

the effect of natural convection and osmotic flow must be 

assessed independently of diffusiophoresis. 

Carr39 microscopically observed the motion of 3pm anion- 

ic latex particles in a sealed capillary whose axis was oriented 

vertically. An unsteady salt gradient was created by the dissolu- 

tion of a salt crystal, introduced at the bottom end before 

sealing. With the more dense solution on the bottom, natural 

convection is avoided. Although sedimentation is now important, 

this contribution to particle motion can be independently 

assessed by observing the particle before the salt has had time 

to diffuse to its vicinity. When NaCl ( B  < 0 )  was used as the 
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96 ANDERSON AND PRIEVE 

salt, the concentration gradient attracted the particles toward 
the crystal with a speed considerably above that due to sedimenta- 
tion; whereas particles from the same latex were repelled from a 
crystal of KI03 ( B  > 0). Results with KC1 or KN03 ( B  2 0 )  

were inconclusive because a volume change upon dissolution 
ruptured the seal. 

APPLICATIONS 

Perhaps the oldest commercial process in which 
diffusiophoresis of hydrosols is known to be involved is 
"coacervate dipping",33 which was described in the previous sec- 

tion. Several variants of this process, which is used to apply 
latex coatings, have been assigned other names such as "coagulant 
dip," the "Anode processo' or the "US process". 40 

A more recent process is Autophoretic@ deposition, which 

is currently used to apply the first layer of paint on automobile 
frames and other metal ma~sware.~' Instead of applying a film of 
salt on the metal prior to immersion in the latex, an acid and an 
oxidizing agent are added to the latex. Dissolution of the iron 
in the steel during immersion produces ions which attract latex 
particles to the steel and cause local coagulation. Using a 
formulation containing latex ( 5  wt % solids), HF and H202, Prieve 
- et ,1.42 confirmed patent claims and observed that the rate of 
deposition was linked to the rate of dissolution of the metal. 
They subsequently showed that the same process was capable of 
coating other metals like zinc, whose salts do not cause floccula- 
tion of the latex.43 They proposed migration of the negatively 
charged latex particles in the electric field induced in the 
boundary layer by dissolution of the metal as the rate- 
determining step for deposition. This mechanism was later 
confirmed by Smith and Prieve.' A similar process for depositing 
latex on copper has been investigated by Derjaguin et al. 

Another possible application is e'nhanced deep-bed filtra- 

tion. Fowkes g ,1.45 reported a significant enhancement in the 
coalescence of emulsions by packed beds when mixtures of grains 

44 
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DIFFUSIOPHORESIS 97 

from two metals were used as packing compared to beds having all 

grains composed of the same metal. In their studies, the grains 
were composed either of C, A l ,  or Fe. They explained the enhance- 
ment by observing that a difference in oxidation potential could 

arise across the solution separating two grains composed of 

different metals. This potential difference, which would attract 

charged droplets to one of the grains, is zero when the two 

grains are composed of the same material. Thus the process was 

named "bimetallic coalescence". In a series of experiments compar- 

ing the performance of a C bed or an A 1  bed with one having a 

mixture of the two grains, the mixed bed clarified the haze 

caused by the oil droplets much better than the C bed? but the A 1  

bed performed almost as well as the mixed bed. In a second 

series, C, Fe and C/Fe beds were compared. Results similar to the 

3 first series were obtained except that a precipitate of Fe(0H) 

accumulated in the bed, which clearly indicates dissolution of 

the metal has occurred. 

An equally plausible mechanism is the diffusiophoretic 

migration of droplets to the dissolving metal grains. The differ- 

ence in oxidation potential may serve to increase the dissolution 

of Fe or A 1  instead of directly causing a potential drop across 

the solution. Considering only the electrophoretic contribution 

to diffusiophoresis, the resulting average flux of particles to 

the surface of the grains is given by: 

NE = m E c = m(A$)cp bs , ( 5 2 )  
P 

where m is the electrophoretic mobility of the particles, c is 

their concentration in the interstitial fluid, E = ( A 4 ~ ) / 6 ~  is 

the electric field induced by the diffusion of the salt, and A $  

is the diffusion potential induced across the diffusion boundary 
In the absence of diffusiophoresis, the layer of thickness 

deposition of sub-micron particles occurs mainly by convective 

diffusion, whose rate is given by: 

P 

& S .  

ND = D (53) 
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98 ANDERSON AND PRIEVE 

where D is the diffusion coefficient of particles and 6 is 
P P 

the thickness of the boundary layer for the diffusion of parti- 

cles. According to the Levich-Lighthill equation for convective 

diffusion to a sphere 6 a D-1'3. Thus dividing (52) by (53) 

yields: 

-4 2 -1 -1 Substituting some typical values (m=10 cm -v -s  , A $  = 25mV, 
2 2 D = cm / s ,  and Ds = cm I s ) ,  this equation predicts an 

enhancement in filtration efficiency of 2 5  fold. 

Ghosh and Brown46 made quantitative measurements of 

efficiency of removal of oil from oil-in-water emulsions by deep 

beds packed with C, A1 and/or Fe grains. They studied the effect 
of flow rate, bed depth, porosity as well as changes in 

efficiency with time as precipitate and oil accumulate in the 

bed. As usual for deep-bed filtration, the fraction of oil in the 

effluent was found to decay exponentially with the depth of the 

bed. This overall behavior is consistent with a local deposition 

rate of droplets onto the grains which is first order with 

respect to droplet concentration - as in (52) and (53). The 

proportionality constant in the exponent is called the "filter 

coefficient." If the local deposition rate is determined by the 

electric field, and if the electric field is the difference in 

oxidation potentials divided by some average interparticle 

spacing, then the filter coefficient would be inversely propor- 

tional to the flow rate through the bed. The experimental data 

plotted on log-log paper display a slope which is considerably 

less negative than -1, which suggests that the local electric 

field must increase with flowrate. Since 6s in (52) is expected 

to shrink with increasing flowrate, electrophoretic migration of 

the droplets caused by dissolution of the metal grains is con- 

sistent with these observations. 

&." repeated the measurements of Fowkes et 
al.45 They confirmed the effectiveness of beds having mixtures of 

metal grains in removing oil droplets; however, they noted that 

P 

Liberman 
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DIFF'USIOPHORESIS 99 

some granular beds composed of a single metal are just as 

effective. They deduced that the potential difference across the 

interstitial solution between dissimilar grains is only 14mV 

compared to a difference in oxidation potentials of nearly 800mV. 

Filtration of dilute, submicron, polystyrene latexes by beds 

packed by mixtures of metal grains was also studied. Some mix- 

tures were very effective while others were not. In addition to 

intimate mixtures of two types of grains, they also tried arrang- 

ing the two types of grains in two layers. For a given pair of 

metals, nearly the same results were obtained in either con- 

figuration. This indicates that the distance separating the 

different metals is not important. Finally they conclude that in 

order to obtain a high efficiency of filtration, the metal grains 

must corrode. This correlation between deposition rate and metal 

dissolution rate was also found in the coating experiments of 

Smith and Prieve. It provides additional evidence for a 

common mechanism. 

If dissolution of metal is required for enhanced filtra- 

tion, the grains of the bed will have a limited lifetime. If the 

enhancement by metal dissolution occurs because of an induced 

diffusion potential (the V J I  in Eq. ( 5 2 ) ) ,  then nonmetallic 

grains which promote diffusion of ions toward or away from their 

surface should also enhance filtration. For example, the counter- 

current diffusion of ions which occurs within ion-exchange resin 

beads will induce a diffusion potential. Beds of ion-exchange 

beads can be easily regenerated, providing an almost unlimited 

lifetime. In a preliminary study, FitzPatrick et al.48 showed 
that ion-exchange could enhance filtration of micron-sized la- 
texes by up to five fold. Filtration of biological organisms in 

beds of ion-exchange resins is an important process in industrial 

fermentation. A review by Daniels49 contains over 500 references. 

SUMMARY 
0 

Diffusiophoresis is the locomotion of a rigid colloidal 

particle which is induced by a macroscopic gradient of solute 
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100 ANDERSON AND PRIEVE 

concentration. In this paper we have reviewed both the theory and 

experiments on diffusiophoresis of hydrosols. In order for a 

solute gradient to induce motion, there must be some interaction 

(e.g. electrostatic or van der Waals) between any solute molecule 

and the colloidal particle. This might be manifested as physical 

adsorption of the solute into the interface between the particle 

and the solution. The interfacial region must extend a few solute 

diameters from the solid if the motion is to be measurable. 

Derjaguin and his Soviet coworkers first recognized this 

phenomenon and first predicted the relative speed between the 
1,15 fluid and the solid in the simple geometry of a flat plate. 

Their later experiments confirmed that migration of latex parti- 

cles can be induced by salt gradients. 34y35 More recently, we 
extended the analysis to spherical particles of finite radi- 

us. 18y19 For both electrolytes and uncharged solutes, the leading 

term in a power series expansion of the speed (in terms of the 

ratio of the thickness of the interfacial region to the particle 

radius) is identical to Derjaguin's result for the flat plate. 

The second term in this expansion (the leading term of the 

correction for curvature) is negative; thus curvature tends to 

retard the particle's speed. To neglect curvature, the particle's 

radius must be much larger than the adsorption length as well as 

the thickness of the interfacial region. Prieve and Roman have 

numerically obtained a more general solution for the case of 

 electrolyte^.^^ Recent experiments with commercial latexes in 

salt gradients 8y36 can be entirely explained by electrophoresis 

in the induced electric field; chemiphoresis, the second contribu- 

tion to locomotion, seems to be far less important in these 

sys terns. 

Commercial applications of diffusiophoresis include 

processes for forming rubber gloves and paint films. 

Diffusiophoresis can also enhance the efficiency of deep-bed 

filtration. Since the directi'on of net migration is predicted to 

depend on the size and charge of the particle, diffusiophoresis 

might be applied ti0 the analysis of particle mixtures. Finally, 
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we might speculate that there is some relationship between 
chemotaxis of biological cells and diffusiophoresis. 
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